
Draft – Please Do Not Share Or Distribute

Blackbox Request Tracing for Modern Cloud Applications

Sachin Ashok1, Vipul Harsh1, P. Brighten Godfrey1, Radhika Mittal1,
Srinivasan Parthasarathy2, and Larisa Shwartz2

1University of Illinois at Urbana-Champaign
2IBM Research

Abstract
Monitoring and debugging modern cloud-based applications
is challenging since even a single API call can involve many
inter-dependent distributed microservices. To provide observ-
ability for such complex systems, distributed tracing frame-
works track request flow across the microservice call tree.
However, such solutions require instrumenting every compo-
nent of the distributed application to add and propagate trac-
ing headers, which has slowed adoption. This paper explores
whether tracing requests can be achieved without any applica-
tion instrumentation, which we refer to as request trace recon-
struction. We present TraceWeaver, an optimization frame-
work that incorporates readily available information from
production settings (e.g., timestamps) and test environments
(e.g., call graphs) to reconstruct request traces with usefully
high accuracy of 90%. Evaluation with (1) benchmark mi-
croservice applications and (2) a production microservice
dataset demonstrates high accuracy. We evaluate use cases for
TraceWeaver, including A/B testing and finding performance
outliers, showing effective results. Finally, we discuss poten-
tial future approaches which can aid in improving accuracy
and ease of adoption of TraceWeaver.

1 Introduction
Modern “cloud native” applications built using a microservice
architecture split their functionality into small logical units,
which can be deployed as containers and automatically scaled
(i.e., dynamically replicated to meet demand) with cluster
management platforms like Kubernetes. In addition, com-
pared to monolithic applications, individual microservices are
more manageable to build and maintain, easier to individually
redeploy in new versions, and easier to write in different lan-
guages and frameworks. The result is that modern applications
are highly distributed, potentially involving hundreds or even
over a thousand [34] individual microservice instances. Unfor-
tunately, such highly distributed applications are challenging
to operate and debug [12, 14]. For example, an operator may
wish to determine which service is responsible for inflating
latency for a certain user-facing API call for a specific subset

of traffic. But an API call may produce children, i.e., further
API calls to other services issued in service of the parent call.
The resulting tree of API calls may ultimately comprise many
stages of back end calls to various services, making it hard
to isolate the component responsible for a particular problem.
For such troubleshooting, it is indispensible to have a request
trace, which we define as a record of each request (API call)
into a microservice, and recursively all requests that it spawns
(children, children of children, etc.) to other microservices.
That is, each record within the trace includes a start and finish
time (known as a “span”) and pointers to its child request
records.

Distributed tracing frameworks such as Jaeger [27] and
Zipkin [43], along with commercial solutions like In-
stana [25] and Datadog [18] and earlier research proposals
like XTrace [22], help developers deal with the above prob-
lem. Because network communication is externally visibile,
it is easy for such frameworks to automatically log requests
between microservices as isolated events. But to produce full
request traces, such systems require application developers
to instrument their code, carrying identifiers that associate
each request with its children, which is known as context
propagation. Even within a single service, instrumentation is
needed at a module level to track execution flow, requiring a
context object to be passed as an argument when modules are
invoked [33].

This application-level code modification is required for re-
quest tracing, no matter what underlying framework is used
by the application (service meshes, gRPC, etc). Only the
application-level modules can track the execution flow (i.e.
which incoming request spawns which outgoing requests).
This context-specific information cannot be automatically
made available to the underlying frameworks without any
application support. The code modification for context propa-
gation can involve a considerable investment of time, given
dozens or hundreds of microservices written by different
teams. Some microservices can be more challenging (e.g.,
legacy apps) or completely impossible to modify (e.g., pro-
prietary, binary code), resulting in incomplete request traces.

Draft – Please Do Not Share Or Distribute
Even when feasible, adding tracing instrumentation is often
buried under a long list of feature requests. This is one ma-
jor factor1 that has limited adoption. Gartner, evaluating the
corresponding commercial space of application performance
monitoring (APM), projected only 20% of enterprise applica-
tions would have deployed APM as of 2021 [38].

In this paper, we pose the question: to what extent can
we accurately produce request traces without instrumenting
applications? We refer to this problem as blackbox request
tracing.

There is a large body of work on distributed tracing, that
tackles a different, but related, problem – inferring that ser-
vice X tends to depend on service Y, either using individ-
ual span-level information [11, 15, 35] or relying on request
traces generated via context propagation [16]. In contrast,
with blackbox request tracing, we seek finer-grained infor-
mation about which specific requests resulted in which other
specific requests, without relying on any application support
(context propagation). This is vastly more valuable (e.g., to
debug problems with specific requests, or important groups
of requests) but also fundamentally more challenging. Appli-
cations concurrently serve many incoming requests, making
it difficult to determine which incoming requests led to which
child requests.

Blackbox request tracing therefore remains an unsolved
problem that is highly desired by industry [10]. A few exist-
ing proposals do attempt to tackle this problem [36, 39], but
make several simplifying assumptions about the application
threading models, which severely restricts their applicability.
Our work, in contrast, seeks a more general solution that is
not tied to a specific threading model.

Our approach is based on two observations. First, while
it might not be possible to construct fully accurate request
traces without leveraging application support or without mak-
ing restrictive assumptions about the application’s threading
model [36, 39], even approximate request tracing (with good
enough accuracy) can be highly useful. Queries pertaining
to a single request and its children require a fully accurate
trace for that request. However, queries pertaining to a sub-
population of requests (e.g. the set of requests with response
latency in the tail 5%ile, or those belonging to higher priority
users, etc) need request tracing to track the children of the
requests belonging to the specified sub-population, but can
still be meaningfully answered with approximately correct
request traces.

Our second observation is that modern microservice en-
vironments provide new avenues for collecting useful infor-
mation that we can leverage for blackbox request tracing. In
particular, even though we treat the application itself as a
black box, we can see detailed information about the commu-
nication in and out of that black box. Service meshes, whose
sidecars act as proxies for each microservice instance, can

1Others include cost of commercial solutions and performance overhead.

B

R1

R8

R2

R5 R6

R7

R3

R4

R’3

R’4

A

D

E

C

Figure 1: Traces and call graphs for an example application

observe layer 7 information like the endpoints and arguments
in a request. eBPF, meanwhile, can analyze the application’s
interactions with the OS, such as the exact timing of open-
ing or writing to a socket. Moreover, modern packaging of
applications for Kubernetes environments makes it feasible
to spin up applications in test environments, where they can
be observed in a controlled way. The call graph – that is, the
sequence of invocations of backend services initiated by re-
quest arrivals at a service – is one crucial property that can be
reliably observed in such test settings, as it depends mainly
on application code and system inputs.

We show that the above information sources, incorporated
together, are sufficient for blackbox request tracing with use-
ful accuracy. We design an optimization framework which
can combine various types of constraints and hints to disam-
biguate request ancestry. Our prototype, in particular, incorpo-
rates timing and call graph constraints, as well as soft timing
heuristics to boost accuracy. In our evaluation using appli-
cations from the DeathStarBench [23] benchmarking suite,
we find that a simple baseline approach has 77% accuracy in
linking spans, while our techniques boost this to 98%. Our
preliminary analysis on a production dataset from Alibaba [8]
running several customer-facing applications showcases a
high accuracy in the range of 85%-95% even under variable,
high system loads. Even though this accuracy is imperfect,
the prototype may already be useful for certain tasks. We
demonstrate two examples: determining which back-end ser-
vice caused a particular subset of API calls to be slow, and
detecting changes in a service’s performance profile while
A/B testing.

However, we believe this is not the end of the story: we
expect accuracy could be pushed increasingly high, in increas-
ingly difficult environmental circumstances, by incorporating
more information into our (or a similar) framework. We de-
scribe several such necessary and promising directions in
future work (§6). Overall, we believe blackbox request trac-
ing is a promising way to provide developers with a “free”
debugging tool, without additional effort on their part.

Draft – Please Do Not Share Or Distribute
2 Problem Description
2.1 Terminology

We refer to Figure 1 (representing a microservice based appli-
cation) to explain the terms used throughout the paper.
Span. A span represents one execution of an API call at a
running service instance, with metadata like the caller, callee,
API endpoint, start time, and end time. Generally, the root
of the tree is a span invoked by an external client. In the
above example, the root span starts when request R1 arrives at
front-end service node A, and ends when the corresponding
response R8 is returned. The remaining spans involve subse-
quent request-response pairs, e.g R2-R5, R3-R4, etc. which are
child spans of the R1-R8 pair.
Call graph. At each service X, we refer to the order in which
back-end calls are made to respond to an incoming request as
the call-graph at X. For the above example, the call graph at
A tells us that to respond to an incoming request, A calls B
and C sequentially and once it receives a response from C, it
returns a response. Similarly, the call graph at B tells us that
to answer a request from A, B calls D and E in parallel and
returns a response once it hears back from D and E.
Parent-child relationship. A parent-child relationship R1 →
R2 indicates that in the course of processing R1, the microser-
vice invoked R2. In the above example, in order to process
and respond to the incoming request R1, A calls service B
(R2). Once it gets a response R5 from B , it calls service C
(R6). Once it receives the response R7 from C, it does some
processing of its own and returns the response R8 to the user.
This makes the requests R2 and R6 children of the request
R1. Likewise, at Service B, follow-up requests R3 and R′

3 are
children of the corresponding request R2.
Request Trace. A request trace captures the parent-child
relationship. The record for each request within the trace
includes its span (i.e., the start and finish time) and pointers
to its child request records.

2.2 Request Tracing

The key problem we target in this paper is, given log files
with individual spans, 2 can we construct complete request
traces, i.e. map each request arriving at each service with the
corresponding child requests? In the context of our example,
we wish to map R1 to R2 and R6 at A; R2 to R3 and R′

3 at B,
and so on. We refer to this problem of obtaining individual
request traces for all requests as request tracing.

2.2.1 Why is request tracing useful?

Tracking the journey of a request through several service
components of a distributed application, that work in tandem
to generate a response, is critical for various debugging and
troubleshooting tasks. For example, let’s say an operator is
interested in knowing which microservice is primarily con-

2Such span-level information, used as an input to our system, can be
obtained using service meshes or eBPF hooks, as discussed in §4.

tributing to the delay for a small set of high priority client
requests. To produce the answer, one must be able to map
which backend requests were made to produce the response,
for each of those high priority requests at each service.

2.2.2 Whitebox request tracing: why is it hard?

One way to keep track of a request’s journey through the
application is to instrument all service components so that
a unique context identifier, attached to an incoming request,
is carried onto any requests to backend services that result
from the incoming request. For example, R1 carries a unique
identifier that service A propagates to R2, from which service
B propagates to R3, and so on. This is known as context
propagation, and has been extensively explored through an
active line of research [22, 27, 28, 30, 37, 43]. Given support
for context propagation, spans from each microservice can be
grouped by their context identifiers and spans with the same
identifier can be stitched together to form a request trace.

Such context propagation must be inherently supported
in the application logic, since only the application can track
the execution flow across function boundaries. It cannot be
provided as a plug-in feature by the underlying frameworks
(e.g. the service mesh or RPC frameworks) which do not
have the required visibility into the application logic and its
internal execution flow.

Although copying identifiers seems simple at first glance,
it involves major practical hurdles: all software components,
maintained by different teams or different vendors, have to
appropriately propagate context. This involves agreeing on an
API to use consistently, but more importantly, instrumenting
internal microservice code to carry identifiers across function
calls and data structures.

OpenTelemetry [32] defines a standard API and distributed
tracing frameworks like Jaeger and Zipkin (and other com-
mercial solutions) provide instrumentation tools for context
propagation, either in common libraries or via hooks that de-
velopers can explicitly call. However, it is up to individual
app developers to use the APIs or leverage the available tools,
and context propagation continues to be a difficult task that
increases app development burden. As a result, it has seen
limited adoption, especially for legacy applications which
require significant developer effort to modify existing code
(only 20% of enterprise applications, as of 2021 [38]). Further-
more, an application could use proprietary third party service
components which may not be possible to instrument.

If software components have not yet been instrumented
to propagate context, one could use program analysis tech-
niques to automatically modify software components so that
they pass request context. This approach, taken by systems
such as [20], is error-prone and still requires developers to go
through the changes suggested by the tool and approve them.

Draft – Please Do Not Share Or Distribute
2.2.3 Blackbox request tracing

In the absence of context propagation, another strategy to con-
struct request traces is to infer the request traces based on the
information available in the spans. Specifically, one can match
incoming requests at a service, say A, to outbound requests
from A based on information contained in the requests such
as timing data, thread-level data or header parameters. One
benefit of this approach is that very little from the application
developer is required. This approach, which we refer to as
blackbox request tracing, is the subject of our work.

2.2.4 Existing approaches for blackbox request tracing

Existing works such as DeepFlow [36] or vPath [39] solve
blackbox request tracing for a restrictive set of applications as-
suming a specific threading model for the application. Specif-
ically, for the threading model, it is assumed that there are no
hand-offs between threads and no asynchronous calls, so that
every outgoing request from a thread can be mapped to the
most recent outstanding request picked up by that thread. Us-
ing this assumption, DeepFlow (and vPath) is able to record
the thread t that picked up a request rin, and for any subse-
quent request rout sent by t until t picks up the next request,
associate rin with rout . While this scheme is effective for appli-
cations that follow this threading model, these assumptions do
not hold for several common application types – applications
which hand over requests to communication threads of RPC
libraries such as Node.JS [4] or gRPC [1], or any application
that employs asynchronous communication or batching.

2.2.5 Our approach

We seek a more general solution for blackbox request trac-
ing that is not restricted to specific threading models. We
observe that modern microservice environments provide new
avenues (e.g. service mesh and/or eBPF, access to test envi-
ronment, etc) for collecting information. As we discuss in
§ 2.4, while these avenues cannot, on their own, provide ex-
plicit information to construct request traces in the absence
of application-level context propagation, they can be used to
obtain other useful information. Our solution, TraceWeaver,
exploits these avenues to infer the call graph and span tim-
ings, and then applies a novel timing analysis algorithm to
construct approximate request traces from this information.
TraceWeaver can be applied to each service individually, and
can also co-exist with other solutions for blackbox request
tracing (e.g. completing the request trace by stitching spans
at specific services that do not support context propagation,
or at services that have threading models that do not comply
with the assumptions of Deepflow or vPath).

2.3 Related “Distributed Tracing” Problems: How they
differ?

Several works under the umbrella term “distributed tracing”
solve a variety of problems distinct from request tracing. One
such problem, that multiple existing work try to tackle, is

to obtain the service-level dependencies such as service A
calls service B to answer inbound requests at A but not vice-
versa. We refer to this problem of obtaining dependencies
between services as “dependency mapping”. The Mystery
Machine [16] is a system for dependency mapping. It as-
sumes context propagation and uses the request-traces thus
obtained to derive a model of how services talk to each other.
As discussed in § 2.2.2, context propagation is burdensome
for developers and hence has limited adoption in the real-
world. Orion [15], Sherlock [11] and WAP-5 [35] also tackle
dependency mapping – they take as input span level data,
and obtain the dependencies between services via analyzing
delays in network traffic between when A receives a request
and when A talks to B.

In contrast to dependency mapping, for request tracing, we
seek finer-grained request traces, linking a specific request
inbound at service A to another specific request outbound
from A (and similarly at other services). Request tracing is
more valuable than dependency mapping since request traces
can be used to analyze performance of a single request or more
generally, any subset of requests (see § 3.3). At the same time,
disambiguating between far more numerous possibilities for
request traces for every single request is fundamentally more
challenging than finding which other services, a particular
service depends on. We tried to repurpose one of the above
dependency mapping systems, WAP-5 for blackbox request
tracing and found its accuracy to be low (§ 5). Sherlock and
Orion employ similar analysis, hence we expect them to have
the same problems as WAP-5.

Many systems take as input request traces, and analyze
them to improve various aspects of the system. For instance,
Snicket [13] optimizes sampling of request traces based on
developer queries for efficient storage. [42] uses logs from
services, tagged with identifiers, to learn models that can
help in various storage related decisions. DQBarge [17] in-
jects critical system information (e.g. load) onto requests,
which is passed around so that services can optimize for qual-
ity/performance trade-off. All of the above systems assume
capabilities similar to context propagation, but they can be
used in conjunction with blackbox request tracing which can
make request-traces available for their analysis.

2.4 Available information for blackbox request tracing

We briefly outline commonly available monitoring compo-
nents and information that can be leveraged for blackbox
request tracing.

2.4.1 Service Mesh

Service meshes (e.g. Istio [26], Consul [24]) are application
layer management software that sit in front of application ser-
vices. So, when an app performs a remote API call, instead of
directly communicating with the remote service instance, the
request passes through a sidecar paired with the application
instance. Service meshes provide a variety of communication

Draft – Please Do Not Share Or Distribute
functionalities such as discovering service instances, load bal-
ancing among those instances, retrying failed requests, etc..
They have two properties that are of interest to us: (1) they
can be deployed transparently to the application regardless
of programming language or framework, and can even be
retrofitted onto existing apps. (2) As every inbound and out-
bound API call passes through the service mesh, it provides an
opportune insertion point for telemetry [9]. Sidecars can see
requests, associated responses, and API contents (e.g., HTTP
headers) and can even modify requests. They do not, however,
directly see which requests spawn which other requests. In
other words, sidecars can easily see spans, but cannot directly
track request traces. Thus, we have more work to do.

2.4.2 eBPF

eBPF [21] is an instrumental technology that allows users
to capture the system calls made by a program, without any
source code modification. eBPF can be used to obtain detailed
insight into the inner workings of a service. For example, via
eBPF hooks, one can obtain highly accurate timestamps of
when a request/response arrives at a socket buffer by hook-
ing on kernel APIs used for reading (e.g., read, recvmsg) or
writing data (e.g., write, sendmsg). We note that both service
meshes and eBPF monitoring can provide timing data about
spans, hence either can be used– both are not needed.

2.4.3 Standardized test environments

Test environments designed to mirror production deployments
assist developers in various tasks – functionality testing, load
and failure handling, fault injection, and understanding dif-
ferent policy trade-offs. While such mock environments have
existed for a long time, the advent of containerization tech-
nologies (e.g., Docker [19]) and orchestration frameworks
(e.g., Kubernetes [29]), which allow for a standardized ap-
proach to package and run software, has made it possible to
mimic production (albeit at a smaller scale) accurately.

One challenge in transparent tracing is automatically in-
ferring what call graph an API call results in. Systems such
as [6, 35] seek to obtain the call graphs from production
environments from span data, without request-level traces.
However, such procedures can have inaccuracies due to many
concurrent requests and the inability to run tests to explore
different hypotheses. Test environments allow for isolated
and automated analysis – one can send a single query to API
endpoints (using inputs from production traces) to observe
the precise sequence of backend services that are invoked and
obtain the call graph.

Test environments can also facilitate other investigations
that can help in blackbox request tracing, such as obtaining
typical processing delays at a service, relationships between
HTTP request parameters, and learning threading patterns.
It is important to note, however, that acquiring these hints
provides only a useful building block rather than a complete
solution, as we are still faced with the more challenging task

Inferring
call graph

Optimization
framework

Query
phase

Span data
(via service mesh/eBPF)

Call graph
+ order

Filter on requests
(specified by operator)

Aggregate
Trace

Traces from test
environment

Outputs

Inputs
Request
traces

Request
traces

Figure 2: Inputs and outputs to each phase in TraceWeaver.

of accurately mapping concurrent requests to their respective
child spans in the production environment.

3 Design
There are three phases to the design of TraceWeaver (Fig-
ure 2).

1. Inferring Call Graph: the first part constructs the service
call graph and the ordering within the call graph via
test-environments (§ 3.1).

2. Optimization: using the call graph and the span
data (obtained from sidecar proxies or eBPF hooks),
TraceWeaver casts the blackbox request tracing problem
as an optimization problem that needs to find the most
appropriate trace for each request (§ 3.2).

3. Querying: the operator can specify a filter on the set of
requests to see an “aggregated trace” annotated with the
aggregated delays over the subpopulation of requests
that match the filter (§ 3.3).

3.1 Inferring Call Graph

Data Collection. We use test environments to learn con-
straints associated with an <application/ API endpoint> pair.
For example, in order to test the call-graph associated with
querying appname.com/user-registration, we run queries to
this endpoint. By analyzing the ensuing data-flow within this
isolated test environment, the service-level dependencies in
the call-graph can be ascertained, e.g. A calls B and C, and B
calls D and E (Figure 1).

However, more subtle constraints such as does service A
invoke B or C serially or in parallel are more challenging
to learn. Since the application doesn’t already have tracing,
multiple requests arriving at A send out numerous backend
requests to B and C muddying any potential analysis about
sibling relationships. Our solution therefore involves running
requests one at a time in isolation, in the test environment, to
observe these relationships which would guarantee accurate
mapping of a request from the starting to the ending span (as
it is the only request in the system). Now, we can run various
tests to learn about the pattern of backend request invokation.

Draft – Please Do Not Share Or Distribute
For example, to validate whether invoking C depends on the
completion of B (serial order), we can artificially delay the
response from B and analyze the change in start time of
the request sent to C. Running several such tests produces
a trace dataset which we can analyze offline to learn useful
constraints for our optimization framework.
Offline analysis: Looking at the request tree of a single iso-
lated request allows us to infer service-level dependency struc-
ture. We conduct the following analysis to then infer the re-
lationships between siblings at a service (i.e. their respective
ordering) by looking at a collection of such isolated traces.
We model the endpoints invoked by service A (endpoints B,
C, and D) as vertices in a graph and add directed edges to
indicate ordering relationships. For example, an edge from B
→ C indicates that A’s request to C depends on the response
it gets from B. Initially, we add directed edges between every
pair of vertices to generate a fully connected graph (as every
relationship can be possible). Now by analyzing the traces
from our carefully constructed dataset, for every violating
example of a relationship, we remove the corresponding edge
from the graph. For example, if a particular trace indicates
that C was invoked before or during B’s execution, we remove
the C → B edge. After iterating through all traces, we are left
with a directed acyclic graph with a set of edges which signify
genuine sibling relationships.

3.2 Optimization phase

We frame the problem of blackbox request tracing as an op-
timization problem and propose an algorithm that approx-
imately solves it. The optimization problem uses as input:
(i) Span-level information, that includes the request-response
pairs (e.g., R1-R8 from Figure 1) and the corresponding timing
information. This information can be obtained from service
meshes (sidecar proxies) that intercept all requests and re-
sponses. It can also, alternatively, be obtained from eBPF
hooks that can intercept syscall (reads and write to socket
buffers) as exemplified in §4. (ii) The call-graph (with service-
level dependencies and ordering), obtained as explained in
§3.1. We use knowledge of the call graph to impose request
causality constraints at each service. These include the more
evident parent-child causal relationships (e.g., incoming span
R1 at A must arrive before outgoing span R2 to B is sent out),
and much less evident "sibling" relationships (e.g., endpoint
B (span R2) must be invoked before invoking C (R6)). With
these constraints in place, we run our optimization algorithm
(described in §3.2.2) to accurately stitch together spans to
obtain traces.

3.2.1 Assumptions

Our solution makes the following assumptions: (i) A parent
span’s response is sent out only after all its child spans fin-
ish processing. (ii) Every successful request has a response,
i.e., we assume call-return behaviour commonly employed by
REST and gRPC endpoints. (iii) Call graphs are either static

with a well-defined structure, or have a limited form of dy-
namism where a request follows a subset of the call graph (e.g.
due to caching). We leave tackling other forms of dynamism,
e.g. due to retries, failures, and quorums to future work (§6).
(iv) A service’s processing time is well-captured by a stan-
dard distribution (e.g., Gaussian, exponential) in a non-trivial
proportion of the time (we discuss how this assumption can
be relaxed in §6).

We describe the optimization framework next.

3.2.2 Basic optimization (for uniform call graphs)

For ease of exposition, we first describe the optimization
framework when all requests follow the same call graph order,
that is, there’s no dynamic behaviour induced due to caching
or errors. We then describe how we can fold dynamism into
the optimization.
Breaking the problem down to each service. In order to
reconstruct the request trace, it is enough to solve the problem
locally at each node: mapping all incoming spans at node X
to the outgoing back-end spans from X; e.g., at node A in
Figure 1, this means mapping incoming spans from the exter-
nal client (e.g. R1) to outgoing spans to B and C (e.g. R2 and
R6 respectively). Recall that we know the mapping between
the request and the response of each span. Therefore, we can
consider all mapping problems within a request-response pair
as an independent problem and obtain local mappings at each
node. These local mappings can then be stitched together to
reconstruct the entire request trace.

In order to reconstruct the request trace, it is enough to
solve the problem locally at each node: mapping all incoming
spans at node X to the outgoing back-end spans from X; e.g.,
at node A in Figure 1, this means mapping incoming spans
from the external client (e.g. R1) to outgoing spans to B and
C (e.g. R2 and R6 respectively). The local mappings at each
node can then be stitched together to reconstruct the entire
request trace. We now describe our approach for solving the
problem locally at each service X, again refering to Figure 1.

We define an assignment for an incoming request as a
mapping between the incoming request at service X and its
children requests from service X.
Scoring an assignment: In Figure 1, for service A, let in-
coming span R1-R8 be mapped to outgoing spans R2-R5 and
R6-R7 according to an assignment S. We define the score of
assignment S as

Score(S)

= ScoreAB(t1, t2)+ScoreBC(t5, t6)+ScoreCA(t7, t8)

where t1 is the time at which R1 arrived at A, t2 is the time at
which R2 was sent, t5 is the time at which R5 was received, t6
is the time at which R6 was sent, t7 is the time at which R7
was received and t8 is the time at which R8 was sent. We say
that S is feasible if t1 < t2 < t5 < t6 < t7 < t8.

To compute ScoreAB, we learn the distribution for the pro-
cessing delay between when a request was received from

Draft – Please Do Not Share Or Distribute
the external client at service A, and a corresponding re-
quest was sent to B. We fit a Gaussian distribution for this
delay t: N(µAB, σAB) and set ScoreAB(t1, t2) = logP[t =
t2−t1|N], where P[t|N] is the probability distribution function
of N(µAB, σAB).

Estimating µAB and σAB is non-trivial, since we don’t have
the actual mappings between requests arriving at A and child
requests from A to B, that could have given us the true values
of the processing delays for AB. We note that µAB can still
be estimated exactly without knowing the precise mapping.
Since the mean of the differences equals the difference of the
means, we can take the difference between the mean of arrival
times of k external requests at A and the mean of departure
times of k requests from A to B.

To estimate σAB, we divide the k incoming and outgoing
requests into M = 10 batches after sorting them according to
their start times. For each batch, we compute the empirical
mean and calculate the standard deviation across all batch
means. Multiplying that with an appropriate factor, we get the
estimate for σAB. Note that this estimate is approximate since
the batching is not perfect as the outgoing spans correspond-
ing to incoming spans at the boundary of a batch could be in
the previous or the next batch. Nevertheless, as long as the
batch size is somewhat large to minimize this boundary effect,
we can get an accurate estimate. We periodically estimate µAB
and σAB. We similarly compute ScoreBC and ScoreBC.
Optimization problem Next, we cast the problem of find-
ing assignments for each incoming span as an optimization
problem where the goal is to find assignments that maximize
the total score of all chosen assignments, subject to two con-
straints: (i) all chosen assignments should be feasible, and (ii)
an outgoing request should only be assigned to one incoming
request (its parent). This optimization turns out to be an in-
stance of the multidimensional assignment problem which is
NP-hard [31].
Online Algorithm. We propose an online algorithm that
iterates over all incoming requests in the order they arrive.
One way to obtain the mapping is iterate over each incoming
request, and greedily assign each request the highest score
assignment S, removing the mapped outgoing requests in S, so
that they don’t get assigned to subsequent incoming requests.
However, this greedy approach does not optimize score across
multiple requests. Hence, we build upon this greedy algorithm
to optimize the total score. We describe the full algorithm
below,

1. First, we sort the incoming requests by their start time and
divide the incoming requests in small batches. To decide
the boundary of a batch, when we see a significant gap
between subsequent incoming spans (> the mean span
latency), we end the current batch there. If the gap doesn’t
appear before hitting some threshold (10 spans), we close
the window to keep the batch size small.

2. Within each batch V , we use a technique to approximate

the global maxima, attempting to find assignments for all
incoming requests in V that maximize the total score in
V . Once the assignments have been chosen for batch V ,
the outgoing requests of the assignments are deleted so
that they can’t be assigned again to any span in subsequent
batches.

3. The technique we use to approximate the global maxima in
the batch V , in step (2), is as follows. We find the top K = 5
assignments for each request. Then we create an instance
of finding a maximum cost independent set (MIS), where
the top K assignments for each request in V are nodes and
two assignments have an edge between them if they both
have the same outgoing request for some service. As each
batch is small, we can solve this MIS exactly or nearly
optimally.

3.2.3 Incorporating call-graph dynamism

Dynamic call graphs, where requests deviate from the typ-
ical call-graph, can arise due to caching, errors, retries etc.
TraceWeaver handles one class of deviations, where a request
can follow a subset of the usual call graph. Such dynamism
can arise due to caching or requests which don’t get passed
on to backend services due to failure at an upstream service.

In such cases, incoming spans will be higher in number
than the outgoing spans (at the service where the dynamism
is triggered). We fill up such discrepancies using phantom
“skip” spans which allow some spans at A to not make a call
to B, by mapping those spans to a skip span.

Consider the discrepancy between incoming and outgoing
spans in a given batch (corresponding to the optimization win-
dow of our online algorithm in §3.2.2). Using this discrepancy
as an estimate of the number of skip spans can be inaccurate
due to boundary conditions. This inaccuracy is more acute for
small batch size, and can be reduced by counting the number
of skip spans over a longer time window. Hence, we calculate
the discrepancy over a reliable large window (10 seconds
worth of spans) and use that as the maximum skip span quota
over that window. We next distribute these skip spans to the
individual optimization windows (smaller batches of requests)
in the larger 10s window. We use a waterfilling algorithm [41]
for doing so. This algorithm iteratively distributes the spans
to the most needy batch (i.e. the batch for which allocated
number of skip spans is farthest from the discrepancy between
the outgoing and incoming spans), stopping when it runs out
of the maximum skip spans quota. This ensures that the error
in estimation is distributed across batches.

A final thing we have to take care of is how do we estimate
delay distributions if there are skip spans. E.g. in the appli-
cation from Figure 1, if for a request, A skips the call to B
and directly calls C, we need to know the delay distribution
between A and C in order to score an assignment that uses
a skip span for B. Hence, we build additional distributions
for any pair of endpoints that A talks to and A itself, using an
algorithm similar to WAP5 [35].

Draft – Please Do Not Share Or Distribute

B

3

4

A

D

E

C

7.8 ± 2 ms
1 2.4 ± 0.6 ms

3.7 ± 0.3 ms

3'

4'

2.2 ± 0.5 ms
2

1.9 ± 0.4 ms8

5

6

7

1.1 ± 1 ms

Figure 3: Example aggregate trace for a subset of requests.
We also produce the processing delay at each service (the
dashed curved arrow, not all such delays are shown)

3.2.4 Per-service Confidence Scores

For each service A, we compute a confidence score for A,
equal to the fraction of incoming spans at A that either re-
mained unmapped or weren’t assigned their top choice map-
ping of backend-requests. We found that this confidence score
correlated well with the ground-truth accuracy (Figure 6a).

3.3 Querying phase: Generating aggregate traces

Without any other assumptions, relying only on timing/thread-
level or header parameters for matching spans for a request
will inevitably result in some errors in the request traces ob-
tained via the algorithm above. However, even an approximate
scheme for blackbox request tracing can be very useful for
operators. Operators are often interested in aggregate-level
statistics about a subset of requests, such as for A/B testing
or to analyze performance for requests from a client among
others (§ 5.4). Hence, we provide the following feature to
allow operators to take advantage of the request traces ob-
tained above– the operator can specify a filter on requests that
only a subset of requests S will satisfy. We can then output an
aggregated trace for the subset of requests with delays at each
service, aggregated over requests in S (see Figure 3).

4 System Challenges
Key inputs required by TraceWeaver include the span-level
information and the call graph. We discussed our algorithm
for inferring call-graph from the test-environment in §3. Span-
level information, on the other hand, must be obtained from
live production traffic.

In deployments that support service meshes, this informa-
tion is readily available. The sidecar proxies intercept the
HTTP connections, and have full visibility into the request
and response headers to gather span-information (i.e. the
requsest-response mapping and the corresponding timings).

We can employ eBPF hooks to obtain span-level informa-
tion in deployments that do not support service meshes. We
implemented this eBPF-based approach for a test application
that we evaluate. To capture span-level information at each
service, we employ eBPF to hook onto networking syscalls
(e.g., accept, recvmsg, sendmsg, close). For each syscall, there
are two kprobes: an entry and a return probe. The entry probe

1

2

3

4

5

6

7

8

9

10

11

Search

Reserve

Profile

Rate

Geo

12

Frontend

Figure 4: The hotel reservation app from DeathStarBench.

is used to store the syscall arguments in a BPF hashmap and
the return probe is used retrieve these arguments on func-
tion return. For example, when an accept() syscall is made
to extract a connection request, the eBPF hook can capture
its arguments such as the sockaddr to identify the unique ses-
sion. Similarly, when the application reads/writes from/to the
socket, the probes corresponding to those syscalls can capture
the data being read/written and attach it to the right session
in the hashmap. This mechanism enables capturing informa-
tion on the wire without interfacing with or instrumenting the
application.

Capturing request/ responses from gRPC, which is built on
top of HTTP/2 [3] (the next generation of HTTP protocol), is
a challenge. This is due to their stateful header compression
scheme (HPACK [2]) which makes request/ response headers
uniquely difficult to parse. The HPACK-based compression
feature involves the client and server maintaining a dictio-
nary, mapping previously seen headers to unique numeric
codes, and only passing these codes in further communica-
tion. Without access to this dictionary, we need to resort to
sniffing from the beginning of a HTTP connection in order
to not miss important connection information available only
at initial phase. We then perform “man-in-the-middle” style
dictionary updates to keep track of the dictionaries actively
being updated at the client/ server. In our implementation,
instead of storing this map in kernel space, we collect the
raw data with eBPF, pass it to userspace and use standard
HTTP libraries to examine this data which allows us to read
the plaintext HTTP header and payload. We currently do not
handle encrypted traffic but existing software solutions like
Pixie [5], which are built on eBPF, provide the ability to trace
the API between the application and the SSL/TLS library to
capture it before it is encrypted. We assume this capability
for encrypted traffic.

5 Evaluation
5.1 Setup

We evaluate TraceWeaver on two benchmark apps from the
DeathStarBench [23] suite – HotelReservation and Media
Microservices, a node.js based microservice demo [7], and
on production traces from the Alibaba cluster dataset [8].

We illustrate the HotelReservation app from the Death-
StarBench in Figure 4 as an example. The microservice is

Draft – Please Do Not Share Or Distribute
orchestrated using Kubernetes [29], and Istio [26] is used for
inter-service communication. The app runs on 3 VMs running
Ubuntu 16.04, each provisioned with 4 cores and 4 GB of
RAM. All VMs run within a bare-metal 32-core Intel Xeon
Silver server. We use the wrk2 [40] load generator to generate
load that hits the application’s frontend. We employ Jaeger
tracing [27] to collect ground truth end-to-end traces. Within
this setup, we consider the /hotels API, an endpoint hit by
clients via HTTP-based GET requests to get profiles of avail-
able hotels within a specified geographic location and date
range. The intermediate API calls 1→12 in Figure 4 describe
a serial call graph for this API request. We have a similar
setup for the Media Microservice app which comprises 14
different services alongside their caching and database com-
ponents (Memcached, Redis, and MongoDB) and the node.js
benchmark app comprising 7 different services.
Baselines: We compare TraceWeaver against the following
baselines:
(i) WAP5: which tackles a weaker problem of dependency
mapping by using the span-level information to compute the
probability with which services invoke each other. To this
end, WAP5 tries to maps child spans to the most probable
parent span based off approximated inter-span distributions.
We re-purpose this part of the algorithm to map the outgoing
request to the probable incoming request to construct traces.
(ii) DeepFlow/vPath: As previously mentioned, DeepFlow
assumes a specific threading model where threads pick up re-
quests and process them to completion before switching to the
next request. It assumes no request handoffs between threads,
no asynchronous calls, and access to the thread identifier for
the thread processing a request. While this can effectively
stitch spans at services where these assumptions hold, it fails
at services where it doesn’t. vPath employs a similar assump-
tion, hence in the cases we test, vPath is also represented by
the DeepFlow results.
(iii) FCFS: We also construct a strawman solution where
external requests arriving at a service A are assigned to the
outgoing requests at service B based on their respective ar-
rival and departure orders. The responses from B to A might
arrive in a different order than requests from A to B – the
order assigned to requests from A to C is the order in which
responses arrive from B to A, and so on.

5.2 Benchmark applications

5.2.1 Accuracy vs. load

Figure 5a shows the accuracy of end-to-end tracing for vary-
ing load (requests per second (RPS)) for TraceWeaver, and
the baselines, WAP5, DeepFlow/vPath and FCFS for the ho-
tel reservation, media microservices, and node-js benchmark
apps. As the load increases, requests are reordered (w.r.t. ini-
tial client request) more frequently at the individual services,
so FCFS cannot keep up, but TraceWeaver holds steady. Our
test applications employed gRPC framework where Deep-
Flow/vPath’s assumptions break. This approach managed to

get 80% accuracy at low loads (when the number of concur-
rent requests were lower), but the accuracy quickly degraded
with increasing load. WAP5, whose statistical algorithm was
designed for a weaker usecase, experienced similar degrada-
tion in accuracy with increasing loads.
Top K accuracy: We also analyze how accurate we can get
if one of the top K mappings outputted to the user is correct
and we find that we do extremely well on this metric. A Top
K (for low K, we use K = 5) output is very useful to the
developer as they’re almost guaranteed to obtain the right
mapping for a request within the ranked list of 5 possibilities
which would enable them to inspect and debug requests at a
very fine granularity.

5.2.2 Accuracy vs response times

Developers are often interested in end-to-end traces for
anomalous requests, for instance, those with high response
times. Figure 5b illustrates the accuracy for requests binned
by their response time percentiles at load level = 125 RPS
(response times ranged from 40 ms to 225 ms for our ap-
plication). We can see that for the tail 10%ile requests, the
accuracy of other baselines suffers, but TraceWeaver recovers
the end-to-end traces accurately for >95% of the requests.

5.2.3 Accuracy under heavy caching

Behaviors such as caching and errors result in a dynamic
call graph which differs non-deterministically from the gen-
eral, static call graph we learn. To evaluate the algorithm’s
resilience to this, we artificially insert caching into the search
service of Hotel Reservation, varying the cache hit probability
from 5% to 80%. As we allow spans to skip certain endpoints
optionally as mentioned in Section 3, we are able to get good
accuracy in this dynamic scenario as illustrated in Figure 6b.
Other approaches like FCFS and WAP5 fail to gracefully
decline in accuracy.

5.2.4 Accuracy in asynchronous settings

Another aspect of interest is what happens when asynchronous
behavior like async I/O is present which can interleave re-
quests within a thread by varying degrees. This experiment
is illustrated in Figure 6c where we increase the standard
deviation of the file size distribution to introduce more in-
terleaving between the requests. Approaches like DeepFlow
which depend on a synchronous model fail to perform well in
such settings while TraceWeaver avoids the assumption and
performs well.

5.3 Production traces

Next, we evaluate on production data from the Alibaba cluster
dataset [8] in a similar way as on the benchmark applications
(accuracy vs. load). Our analysis considers a dataset spanning
ten services where requests are traced in a period of 12 hours.
The traces contain parent-child relationships between spans,
and start and response times of the individual spans. However,
the production data is sampled at a rate of 0.5%, making the

Draft – Please Do Not Share Or Distribute

20 40 60 80 100
System load %

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(a

vg
. a

cr
os

s
ap

ps
)

TraceWeaver

TraceWeaver (TopK)

WAP5

DeepFlow/ vPath

FCFS

(a) Accuracy vs. load
(across multiple benchmark apps).

20 40 60 80 100
Latency Percentile Bins

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(a

vg
. a

cr
os

s
ap

ps
)

TraceWeaver

TraceWeaver (TopK)

WAP5

DeepFlow/ vPath

FCFS

(b) Accuracy vs Latency bracket
(across multiple apps).

TraceWeaver

DeepFlow/ vPath

(c) Performance on Alibaba’s dataset
(across 10 services).

Figure 5: (a) Trace-reconstruction accuracy for all requests with increasing system load. (b) Trace-reconstruction accuracy
across increasing load on Alibaba’s dataset (boxplots presents accuracy %iles for 10 services).

0 1 2 3 4 5 6 7
Process

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y/
 C

on
fid

en
ce

Accuracy

Confidence

(a) Confidence scores across services in the
Alibaba dataset.

0 20 40 60 80
Cache %

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

TraceWeaver

WAP5

FCFS

(b) Accuracy in the presence of dynamic behav-
ior (caching)

Ve
ry

 L
ow Lo
w

Lo
w

-M
ed

iu
m

M
ed

iu
m

M
ed

iu
m

-H
ig

h

H
ig

h

Intensity of Request Interleaving

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

TraceWeaver

DeepFlow

(c) Accuracy in the presence of arbitrary storage
I/O

Figure 6: (a) Confidence score compared to the accuracy at a given service (b) Accuracy across increasing caching rates at one
endpoint within the Hotel Reservation application, (c) Accuracy with increasing intensity of I/O tasks which create interleaving
requests within a single thread causes inaccuracy in DeepFlow.

Draft – Please Do Not Share Or Distribute
tracing challenge extremely easy (due to large spacings be-
tween adjacent requests in the sampled set). To counteract this
sampling effect, we artificially increase the number of traces
by duplicating existing requests. Additionally, we compress
the time intervals between these requests while preserving
the essential delay characteristics of the service. In particular,
if two requests, R1 and R2, have arrival times t1 and t2 and
durations d1 and d2, we adjust the spacing (t2 - t1) to be
much smaller while leaving d1 and d2 unchanged. In essence,
smaller spacings lead to many more plausible candidates and
pose a harder challenge for our tracing algorithm. We refer
to the factor by which we reduce the spacings to enhance
the effective RPS as the "load multiple." Note, to undo the
sampling effect, a load multiple of 200-300 is sufficient, but
we stress test it further to evaluate the algorithm’s breaking
point. Figure 5c shows our results on this dataset. As the load
multiple increases, the accuracy drops for all algorithms, but
TraceWeaver is able to get a high accuracy in the range of
85%-95% that is still practically usable.

5.4 Using approximate distributed tracing for debugging

We next highlight two use cases showing how the operator
can use the approximate end-to-end traces derived from our
approach for debugging tasks.

5.4.1 Troubleshooting delays for slow requests

We emulate a performance anomaly scenario by artificially
inflating the request-response span latency at the “Reserve”
and “Profile” services by 40ms for 10% of randomly selected
requests. The operator is trying to localize which service(s)
have the anomaly and wants to know the answer to the fol-
lowing question: which service contributes most to the delay
experienced by the slowest 2% of the requests?

Answering this query requires the complete trace for the
requests with an end-to-end response latency at 98%ile or
higher and then computing the response time of each span
associated with these requests. Figure 7a presents our results.
Stitching the spans using the ground-truth trace reveals Re-
serve and Profile as the culprits. Traces stitched with our
TraceWeaver’s algorithm also correctly yield Reserve and
Profile as the slowest services. Note that this answer which is
of interest to the operator, is not affected by a few inaccurate
traces. In the absence of distributed tracing, only individual
span-level logs are available. If a developer simply looks at
the tail latencies for spans at each individual service to answer
this query, Figure 7a shows that they would find that all of
Search, Geo, Reserve, and Profile have high response times,
thus leading the operator’s debugging process astray.

5.4.2 A/B testing of a recommendation engine

In this scenario, an operator wants to run A/B tests for a new
version (=B) of a recommendation algorithm and wants to
measure the effect of the new algorithm on user engagement.
As is common, the upstream service is modified so that a
small percentage (=x) of requests are redirected from the

older version (=A) to the newer version (=B). Thereafter,
the two versions are compared using statistical p-val tests. If
p < 0.05, the operator can conclude that B results in better
user satisfaction than A.
Without request traces, the operator can’t determine which
user request was redirected to A or B, and hence the only
way to measure user-satisfaction is to consider the aggregate
user-satisfaction score across all requests. If there’s an in-
crease in the overall user-satisfaction, one can conclude that
the increase is due to the x% of the requests which were redi-
rected to B and used the new algorithm. However, since B
is untested, its common to have a small x, say 1%. If only a
small number of requests are redirected to B, then the aggre-
gate user satisfaction does not change much and one is not
able to conclude whether B made a difference The blue line
in Figure 7b shows that the p-value remains high for small x,
indicating that there was inconclusive evidence for B being
better. As x increases, the aggregate user-satisfaction score
will pronouncedly reflect the changes due to B.
With request traces, the operator can separate the individual
requests going to A and B (albeit with some error). Figure 7b
shows that even when the individual requests to A, B are
separated with an accuracy of only 90%, the accuracy for the
troubleshooting task, in determining whether B improves user
satisfaction, remains very high (since the p-val remains below
0.05) in comparison to the analysis without request traces,
described above.

6 Future directions and limitations
Identifying thread affinity: Deepflow [36] and vPath [39]
make restrictive assumptions about threading models, assum-
ing that there are no hand-offs between threads and no asyn-
chronous calls. We find that thread hand-offs are common in
modern microservices (e.g. those using RPC libraries such
as Node.JS [4] or gRPC [1]). Tracking a request across such
hand-offs (potentially via eBPF programs hooked to socket
syscalls) can provide useful information for request tracing.
Even when a thread handles multiple requests concurrently
and asynchronously, the ability to map requests to individual
threads across hand-overs can help prune plausible candidates
that our optimization algorithm must consider, thereby boost-
ing accuracy. However, such fine-grained taint-tracking can
be extremely challenging, and we leave a detailed exploration
of this to future work.
Targeted instrumentation: The confidence scores mentioned
in §5 can also guide selective instrumentation. Analyzing con-
fidence scores per service makes it possible to deduce which
individual services pose the toughest challenge for transparent
tracing. Developers can then explicitly instrument just these
services, bolstering the overall accuracy significantly. Note
that this can be significantly less burdensome than instrument-
ing every service.
Handling variations in the call graph: It will be crucial
to handle the fact that real applications can deviate from

Draft – Please Do Not Share Or Distribute

Search Geo Rate Reserve Profile
Service

0

10

20

30

40

50

60

70

R
es

po
ns

e
tim

e
(m

s)

Operator view
 w/o tracing

TraceWeaver

Ground Truth

(a) Latency profile analysis

0 10 20 30
% of traffic to version B

0.0

0.2

0.4

0.6

0.8

1.0

p-
va

lu
e

W/O Tracing

W/ TraceWeaver (@ 90% accuracy)

0.05 Significance Level

(b) A/B tests using request-traces via TraceWeaver.

Figure 7: Troubleshooting using aggregate traces (a) Latency profile at each service for requests above the 98%ile latency
bracket in a specific time period. Each boxplot represents the [5, 25, 50, 75, 95]%iles of the corresponding distribution. The
developer view shows the distribution of the top 2% latency requests for each service, whereas the distribution for TraceWeaver
is computed via the corresponding spans of requests of interest. (b) p-value for the statistical test comparing user satisfaction
when x% of requests were sent to B, a better recommendation algorithm (the green line) and when all requests were sent to A
(the blue line). Lower p-value implies that the evidence is more conclusive that B is better than A. If p-value < 0.05, then one
can statistically conclude that B is better than A.

the call-graph because of multiple code paths in application
logic, exceptions, or nondeterministic factors like retries and
caching. TraceWeaver can currently only tackle the variations
that stem from caching. Handling other forms of variations
remains an interesting challenge for future research. Potential
directions include looking at error codes in response headers
to infer the number of retries.
Sampling: Distributed tracing with explicit context propaga-
tion can enable sampled tracing, where to reduce overhead,
only a certain percentage of API calls are traced, but each is
traced across its whole call tree. This may be difficult with
our prototype, which can only attempt reconstruction after
all the plausible children spans have executed. To deal with
this we could could slightly oversample (logging all spans
that may have been children of a span that was to be sampled)
or sampling at a different granularity (e.g., all spans within a
specific 1-second time window).

7 Conclusion
Distributed tracing has rapidly increased in importance with
the evolution of modern cloud-native applications, yet its po-
tential impact has been held back in part by the need to modify
code. We have shown that useful tracing is possible without
application instrumentation. Our preliminary results indicate
this can be a very practical direction, with numerous ques-
tions that need to be answered, as well as numerous research
opportunities.

References
[1] gRPC. https://grpc.io/.

[2] Hpack specification. http://http2.github.io/
compression-spec/compression-spec.html.

[3] Http2. https://http2.github.io/.

[4] Node.JS. https://nodejs.org/.

[5] Pixie. https://docs.px.dev/.

[6] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, SOSP ’03, page
74–89, New York, NY, USA, 2003. Association for Computing
Machinery.

[7] Algun. Node.js microservice. https://github.com/algun/
jaeger-nodejs-example, 2019.

[8] Alibaba. Alibaba cluster trace program. https://
github.com/alibaba/clusterdata, 2021.

[9] S. Ashok, P. B. Godfrey, and R. Mittal. Leveraging service
meshes as a new network layer. In Twentieth ACM Workshop
on Hot Topics in Networks (HotNets), November 2021.

[10] O. Azizi. OpenTelemetry or eBPF? That is the Ques-
tion. https://cloudnativeebpfdayna22.sched.com/
event/1Auyh/opentelemetry-or-ebpf-that-is-the-
question-omid-azizi-new-relic-pixie, 2022.

[11] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz,
and M. Zhang. Towards highly reliable enterprise network
services via inference of multi-level dependencies. In Proceed-
ings of the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications,
SIGCOMM ’07, page 13–24, New York, NY, USA, 2007. As-
sociation for Computing Machinery.

https://grpc.io/
http://http2.github.io/compression-spec/compression-spec.html
http://http2.github.io/compression-spec/compression-spec.html
https://http2.github.io/
https://nodejs.org/
https://docs.px.dev/
https://github.com/algun/jaeger-nodejs-example
https://github.com/algun/jaeger-nodejs-example
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://cloudnativeebpfdayna22.sched.com/event/1Auyh/opentelemetry-or-ebpf-that-is-the-question-omid-azizi-new-relic-pixie
https://cloudnativeebpfdayna22.sched.com/event/1Auyh/opentelemetry-or-ebpf-that-is-the-question-omid-azizi-new-relic-pixie
https://cloudnativeebpfdayna22.sched.com/event/1Auyh/opentelemetry-or-ebpf-that-is-the-question-omid-azizi-new-relic-pixie

Draft – Please Do Not Share Or Distribute
[12] P. Bailis, P. Alvaro, and S. Gulwani. Research for practice:

Tracing and debugging distributed systems; programming by
examples. Commun. ACM, 60(7):46–49, jun 2017.

[13] J. Berg, F. Ruffy, K. Nguyen, N. Yang, T. Kim, A. Sivara-
man, R. Netravali, and S. Narayana. Snicket: Query-driven
distributed tracing. In Proceedings of the Twentieth ACM Work-
shop on Hot Topics in Networks, HotNets ’21, page 206–212,
New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[14] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst. Debugging
distributed systems: Challenges and options for validation and
debugging. Communications of the ACM, 59(8):32–37, Aug.
2016.

[15] X. Chen, M. Zhang, Z. M. Mao, and V. Bahl. Automating
network application dependency discovery: Experiences, limi-
tations, and new solutions. In OSDI. USENIX, January 2008.

[16] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch.
The mystery machine: End-to-end performance analysis of
large-scale internet services. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
pages 217–231, Broomfield, CO, Oct. 2014. USENIX Associ-
ation.

[17] M. Chow, K. Veeraraghavan, M. Cafarella, and J. Flinn.
DQBarge: Improving Data-Quality tradeoffs in Large-Scale
internet services. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 771–
786, Savannah, GA, Nov. 2016. USENIX Association.

[18] Datadog. Datadog. https://www.datadoghq.com/.

[19] Docker. Docker. https://www.docker.com/, 2013.

[20] DynaTrace. DynaTrace. https://www.dynatrace.com/.

[21] eBPF. ebpf: Extended berkeley packet filter, 2023.

[22] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker. X-Trace: A
pervasive network tracing framework. In 4th USENIX Sympo-
sium on Networked Systems Design & Implementation (NSDI
07), Cambridge, MA, Apr. 2007. USENIX Association.

[23] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pan-
choli, Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, and
C. Delimitrou. An open-source benchmark suite for microser-
vices and their hardware-software implications for cloud amp;
edge systems. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 3–18,
New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[24] HashiCorp. Hashicorp consul. https://www.consul.io,
2021.

[25] Instana. Instana. https://www.ibm.com/cloud/instana.

[26] Istio. Istio. https://istio.io, 2021.

[27] Jaeger. Jaeger. https://www.jaegertracing.io/.

[28] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill,
K. W. Ong, B. Schaller, P. Shan, B. Viscomi, V. Venkataraman,

K. Veeraraghavan, and Y. J. Song. Canopy: An end-to-end
performance tracing and analysis system. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP
’17, page 34–50, New York, NY, USA, 2017. Association for
Computing Machinery.

[29] Kubernetes. Kubernetes. https://kubernetes.io/, 2014.

[30] LightStep. LightStep. http://lightstep.com/, 2023.

[31] D. M. Nguyen, H. A. Le Thi, and T. Pham Dinh. Solving
the multidimensional assignment problem by a cross-entropy
method. Journal of Combinatorial Optimization, 27(4):808–
823, 2014.

[32] OpenTelemetry. OpenTelemetry. https://
opentelemetry.io/.

[33] Oracle. Oracle. https://docs.oracle.com/en-us/iaas/
Content/Functions/Tasks/functionstracing.htm,
2023.

[34] M. Raney. What I Wish I Had Known Before Scaling Uber to
1000 Services. In GOTO Chicago, 2016.

[35] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and
A. Vahdat. Wap5: Black-box performance debugging for wide-
area systems. In Proceedings of the 15th International Con-
ference on World Wide Web, WWW ’06, page 347–356, New
York, NY, USA, 2006. Association for Computing Machinery.

[36] J. Shen, H. Zhang, Y. Xiang, X. Shi, X. Li, Y. Shen, Z. Zhang,
Y. Wu, X. Yin, J. Wang, M. Xu, Y. Li, J. Yin, J. Song, Z. Li,
and R. Nie. Network-centric distributed tracing with deep-
flow: Troubleshooting your microservices in zero code. In
Proceedings of the ACM SIGCOMM 2023 Conference, ACM
SIGCOMM ’23, page 420–437, New York, NY, USA, 2023.
Association for Computing Machinery.

[37] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. Technical
report, Google, Inc., 2010.

[38] F. D. Silva and C. Rich. Broaden application performance
monitoring to support digital business transformation, 2018.

[39] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and
R. N. Chang. Vpath: Precise discovery of request processing
paths from black-box observations of thread and network ac-
tivities. In Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, USENIX’09, page 19, USA,
2009. USENIX Association.

[40] G. Tene. Wrk2: a HTTP benchmarking tool based mostly on
wrk. https://github.com/giltene/wrk2, 2019.

[41] Wikipedia. Water filling algorithm. https:
//en.wikipedia.org/wiki/Water_filling_algorithm.

[42] G. Zhou and M. Maas. Learning on distributed traces for
data center storage systems. In 4th Conference on Machine
Learning and Systems (MLSys 2021), 2021.

[43] Zipkin. Zipkin. https://zipkin.io/.

https://www.datadoghq.com/
https://www.docker.com/
https://www.dynatrace.com/
https://www.consul.io
https://www.ibm.com/cloud/instana
https://istio.io
https://www.jaegertracing.io/
https://kubernetes.io/
http://lightstep.com/
https://opentelemetry.io/
https://opentelemetry.io/
https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionstracing.htm
https://docs.oracle.com/en-us/iaas/Content/Functions/Tasks/functionstracing.htm
https://github.com/giltene/wrk2
https://en.wikipedia.org/wiki/Water_filling_algorithm
https://en.wikipedia.org/wiki/Water_filling_algorithm
https://zipkin.io/

	Introduction
	Problem Description
	Terminology
	Request Tracing
	Why is request tracing useful?
	Whitebox request tracing: why is it hard?
	Blackbox request tracing
	Existing approaches for blackbox request tracing
	Our approach

	Related ``Distributed Tracing'' Problems: How they differ?
	Available information for blackbox request tracing
	Service Mesh
	eBPF
	Standardized test environments

	Design
	Inferring Call Graph
	Optimization phase
	Assumptions
	Basic optimization (for uniform call graphs)
	Incorporating call-graph dynamism
	Per-service Confidence Scores

	Querying phase: Generating aggregate traces

	System Challenges
	Evaluation
	Setup
	Benchmark applications
	Accuracy vs. load
	Accuracy vs response times
	Accuracy under heavy caching
	Accuracy in asynchronous settings

	Production traces
	Using approximate distributed tracing for debugging
	Troubleshooting delays for slow requests
	A/B testing of a recommendation engine

	Future directions and limitations
	Conclusion

