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ABSTRACT
Modern cloud-based applications have complex inter-dependencies
on both distributed application components as well as network in-
frastructure, making it difficult to reason about their performance.
As a result, a rich body of work seeks to automate performance diag-
nosis of enterprise networks and such cloud applications. However,
existing methods either ignore inter-dependencies which results in
poor accuracy, or require causal acyclic dependencies which cannot
model common enterprise environments.

We describe the design and implementation of Murphy, an au-
tomated performance diagnosis system, that can work with com-
monly available telemetry in practical enterprise environments,
while achieving high accuracy. Murphy utilizes loosely-defined
associations between entities obtained from commonly available
monitoring data. Its learning algorithm is based on a Markov Ran-
dom Field (MRF) that can take advantage of such loose associations
to reason about how entities affect each other in the context of a
specific incident. We evaluate Murphy in an emulated microservice
environment and in real incidents from a large enterprise. Com-
pared to past work, Murphy is able to reduce diagnosis error by
≈ 1.35× in restrictive environments supported by past work, and
by ≥ 4.7× in more general environments.
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1 INTRODUCTION
Troubleshooting IT incidents, such as slow responsiveness of a
service or loss of connectivity, is getting harder due to the large
number of application and infrastructure components and complex-
ity of dependencies between them. Modern microservices-based
architectures contribute to this complexity as do the increasingly
disaggregated, virtualized, and distributed deployments, even span-
ning multiple clouds. As a result, when incidents happen, multiple
teams, responsible for different infrastructure components, scram-
ble to pinpoint the source of the outage or performance degradation.

This paper focuses on an important step of resolving incidents
– performance diagnosis. Operators are commonly presented with
an observed entity 𝐸𝑜 (say, a backend database server) which has a
problematic metric𝑀𝑜 (e.g., high memory usage). The goal is to find
a “root cause”: an entity 𝐸𝑟 and an associated metric or property
𝑀𝑟 which led to the observed problem (or a short list of likely root
causes). Unlike fault localization works [4, 10, 11, 19, 23, 35] that
infer some hidden state of components like links silently dropping
packets, the challenge here is not necessarily to infer hiddenmetrics;
indeed, performance diagnosis systems typically leverage extensive
telemetry so that relevant entities (applications, containers, VMs,
routers, data flows, etc.) and their associated metrics (API latency,
CPU utilization, flow throughput, etc.) may be well known. Instead,
the core challenge is to infer the causality relationship (𝐸𝑟 , 𝑀𝑟 ) {
(𝐸𝑜 , 𝑀𝑜 ).

There has been an active push in industry and in academia to-
wards performance diagnosis – spanning from early work focused
on enterprise networks [11, 27], to applications in data centers [25],
to recently-renewed interest in performance diagnosis for microser-
vices [16]. We found to our surprise, however, that these designs
are limited in either accuracy or applicability of their model to our
target environment. A key design choice is the kind of input they
utilize to model dependencies (i.e., potential functional influence)
between entities in the system, which we can classify into three
types.

(1) No dependency knowledge: ExplainIt [25] requires no knowledge
of the dependency structure, but we found this results in low
accuracy.

(2) Directed acyclic graph (DAG) of dependencies: Sage [16] requires
a known dependency DAG, specifically the microservice call
graph. Unfortunately, real-world enterprise environments con-
tain many cyclic dependencies. Even in the restricted setting of
microservices, cycles exist in practice among services within the
execution of a single request [33]. Furthermore, independent
requests affect each other indirectly due to resource utilization,
and infrastructure components like CPUs, NICs, virtual routers,
etc. introduce further bidirectional (and thus cyclic) influence.
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Furthermore, the specific direction of a dependency between
entities can sometimes be hard to determine.

(3) Relationship graph: Another option is to model known potential
dependencies, but such that theremay be cycles and the relation-
ships themselves are loosely defined, in contrast to causal depen-
dencies. We refer to this as a relationship graph. NetMedic [27]
takes this approach, and is perhaps closest to meeting our needs,
but we found it too resulted in poor accuracy. This may be be-
cause its inference algorithm uses fixed heuristics (as opposed to
a learning-based approach) that are unable to capture complex
and variable patterns in our environments.
In this paper we seek to design a performance diagnosis scheme

which (a) is applicable to common enterprise environments, in-
cluding cloud applications and enterprise infrastructure, while (b)
achieving high diagnosis accuracy. Intuitively, this involves a choice
of input information, and algorithms to effectively reason about
that information.

First, Murphy is built to use telemetry from common enterprise
monitoring software. Monitoring platforms, including the one we
will use to test Murphy, can see entities in the system like VMs,
containers, hosts, routers, TCP flows, etc., as well as relationships
between them – for example, VM 𝑣1 is located on host ℎ5 and it has
a TCP connection to 𝑣2. Such relationships imply a likely influence
between entities, and we want to make use of this commonly-
available information to improve accuracy. But the directionality
of that influence might be either or both, in a way that might be
dependent on the application, API call, scenario, and moment in
time, and it might even be a weak, non-consequential influence.
Therefore, Murphy models entity dependencies with a graphical
model that can accommodate cycles, including bidirectional edges
that avoid assumptions on the specific nature of the relationship
between two entities; cycles thus may be the common case in the
input. This input is of type (3) (a relationship graph), not unlike
NetMedic.

Second, to achieve high accuracy, we need a powerful reasoning
algorithm to predict causality in the relationship graph. We there-
fore design a new learning-based method: Murphy uses a Markov
random field (MRF) [29]1, a type of probabilistic graphical model
that can represent nodes that might simultaneously affect and be
affected by their neighbors. We found it was important to train the
model on demand, and developed an adaptation of Gibbs sampling
for inference. Using this design, Murphy learns a joint distribution
of all entity metrics from historical values, which it uses to predict
the impact of a potential root cause. Finally, after generating the
root causes, Murphy goes one step further and generates simple
human-interpretable explanations about the root causes using a
threshold-based labeling scheme.

In addition to the design of Murphy, this paper describes the
following evaluation results:
• Metric prediction model selection: Accurately predicting the
effect of changing a metric is a key sub-component for perfor-
mance diagnosis (and may also be of independent use). Using
telemetry data from a large enterprise with over 300 production

1MRFs have been previously used for medical diagnosis [39], pattern recognition [12],
image analysis [29] among several other applications.

applications comprising ≈ 17,000 entities, we evaluate four can-
didate designs for this sub-task and further refine our scheme.
We also show that a prediction technique which better captures
cyclic influence improves accuracy, suggesting that these com-
plex interactions are indeed present in deployed applications.

• Diagnosis accuracy:We evaluate Murphy and several recent
schemes in two common environments, which may include cyclic
inputs. (a) In the DeathStarBench [17] microservice benchmark-
ing suite, we test an environment with a microservice application
and its associated infrastructure which may induce cyclic rela-
tionships. Murphy achieved 86% accuracy in diagnosing injected
faults, whereas NetMedic and ExplainIT achieved very low accu-
racy (§ 6.1). When we ignore cycles so that it is possible to run
Sage on the input, it did not produce the root cause as it wasn’t
captured by its modeling. (b)We use an evaluation on real IT inci-
dents from a large enterprise. While the incident set is relatively
small, the result is promising: Murphy produces ≥ 4.7× fewer
false positives than ExplainIt and NetMedic, while producing a
similar number of false negatives, when taking the operators’
manual judgements as the ground truth. (Sage is not included
because it cannot model this environment.)

• Diagnosis accuracy in DAG environments: Although han-
dling more general non-DAG environments is our goal, Murphy
should also perform well when a DAG is known and is an appro-
priate model of the environment. We compared accuracy using
the DeathStarBench environments for which Sage was designed
(§ 6.3). Here, Sage performs well, averaging 77% accuracy, but
Murphy performs even better with 83% accuracy, illustrating the
power of MRF-based reasoning. Both NetMedic and ExplainIT
perform poorly in this environment.

• Robustness: Although using dependency information from
telemetry is useful, there is a risk that the telemetry is incom-
plete or has errors, as is often the case with monitoring data
from a large infrastructure. We evaluate robustness by introduc-
ing a series of types of input data degradation. Overall, Murphy
achieves 1.5× less diagnosis error than Sage, while NetMedic and
ExplainIT perform much worse.

Traces we generated from the DeathStarBench [17] benchmarking
suite are available at [3]. Some of the ideas in this paper are being
adopted in VMware Aria Operations for Networks [6], a commercial
multi-cloud network observability2 platform, to provide insights
about infrastructure dependencies and problems. This work does
not raise any ethical issues.

2 BACKGROUND
2.1 Enterprise network monitoring
Our target domain is cloud infrastructure for medium to large en-
terprises. A typical enterprise uses private clouds (i.e., on-premises
data centers), as well as virtual infrastructure in public clouds.Work-
loads include both monolithic and microservice-based applications,
on virtual machines (VMs) and containers. Environments continu-
ously change as services and infrastructure components are brought
up, scaled up or down, moved, and decommissioned. The scale of

2We use the terms observability and monitoring interchangeably.
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infrastructure varies, with hundreds up to several thousands of
applications in a very large enterprise.

Most enterprise IT teams use multiple monitoring tools to gain
visibility into the environment, including hosts, applications, logs,
and network infrastructure. Microservice-based applications often
utilize additional specialized monitoring with tracing tools like
Jaeger [2] and Zipkin [9] tracking application-level metrics such as
RPC latency and errors.

We describe VMware Aria Operations for Networks [6], an
application-aware multi-cloud network observability platform,
which is our source of experimental data in this paper and is rea-
sonably representative of common enterprise monitoring software.
This platform obtains passive telemetry from multiple data sources,
including: VMmanagement platforms and SDDC controllers (which
in turn monitor individual hosts and virtual networks), physical
network devices (routers, switches, firewalls, etc.), APIs from public
cloud providers, and Netflow/IPFIX sources for information about
data flows. This telemetry includes metadata about a variety of
entity types, with generally multiple performance metrics for each
entity. Each metric is a time series, collected in intervals within
minutes. Data older than a day is aggregated for most metrics into
longer time intervals, and is stored for a rolling summarized win-
dow. Example entity types and associated metric values relevant to
the present paper include:
Entity type Example metrics
VM CPU utilization, memory utilization, network transmit rate,

receive rate, packet drops, disk read/write rate
Host Metrics similar to VM metrics
Container Metrics similar to VM metrics
Virtual NIC Transmit rate, receive rate, dropped packets
Physical NIC Transmit rate, receive rate, dropped packets, latency, interface

peak buffer utilization
Flow Session count, throughput, RTT, packet loss, retransmission

ratio
Switch inter-
face

Network rate, dropped packets, latency, interface peak buffer
utilization

Datastore Space utilization

The monitoring platform also provides entity metadata, encod-
ing entity associations. For instance, a VM is related to its physical
host, NIC, and flows that originate or terminate at it. Flows iden-
tified by 4-tuple (source IP, destination IP, destination port, and
protocol) are related to their source and destination. Metadata can
also encode application definitions: Operators can tag or classify
VMs comprising an application and also define “tiers” within an
application (e.g., web tier, database tier, etc.). Application definition
can be manual, or automatic based on tags, naming conventions,
and analysis of flow communication patterns [7]. The data set used
in this paper has over 300 defined applications (§ 5).

Network monitoring platforms can have visibility into a single
data center or an entire enterprise (depending on deployment). As
such, the scale can be large.3

Enterprise operators use monitoring tools like the above to help
gain visibility into the state of the network and applications. Some
platforms also detect anomalies. However, automated diagnosis is
still lacking and operators rely on manual intervention, trial and
error and domain knowledge of engineers across several teams

3Large monitoring deployments can have hundreds of thousands of VMs monitored
by a single instance of an observability platform, and larger enterprises can deploy
multiple instances with federation visibility.

to diagnose performance issues. Often the root cause is unknown
even after days of manual diagnosis and disappears after operators
restart some components in an attempt to remove the offending
triggers.

2.2 The need for handling cyclic dependencies
A key consequence of relying on commonly-available monitoring
data in typical enterprise environments is that we must work with
highly complex, often cyclic, and often uncertain, dependencies. In
contrast, prior works [11, 16] expect, as input, clean causal depen-
dencies between entities, like dependencies of the form (A–>B),
where A depends on B but not vice versa. They also expect the
totality of dependencies to form a causal directed acyclic graph
(DAG).

Cyclic dependencies, in a system representation, can arise in two
ways. The first is actual cyclic influences in the system. Even in the
restricted setting of microservices, cycles exist in practice among
services within the execution of a single request [33].4 Different
user-facing services can also affect each other indirectly as they
can share resources and common downstream microservices. Even
more cycles appear when we include infrastructure entities. Con-
sider an example: a VM 𝑣1 resides on host ℎ (a similar relation exists
in the incident in Figure 1). The CPU usage of 𝑣1 influences the
overall CPU usage of ℎ, but because the physical CPU is a shared
limited resource, this will also influence the CPU usage of another
VM 𝑣2 on ℎ – and symmetrically, CPU usage of 𝑣2 will affect ℎ and
𝑣1’s CPU usage, thus forming a cyclic influence. A similar effect
would occur with Kubernetes pods in burstable or best-effort mode
on a shared node, as well as other shared resources like memory,
disk, NIC drop rates and throughput, and indirect influence through
TCP flows. All of these dependencies are present in our enterprise
environment.

The second source of cyclic dependencies is when the direction
or existence of dependency between two entities is unclear, and
thus the relationship graph over-approximates the actual influence.
For example, suppose there is a TCP flow from a web front end VM
𝑣1 to another VM 𝑣2. This flow will be visible in the monitoring
system, but its exact nature is not. It might be that the performance
of the application at 𝑣1 depends on the RTT or throughput of the
flow, which in turn might depend on CPU resources in a back-end
database running at 𝑣2, so that 𝑣1 indirectly depends on 𝑣2. Re-
sources at 𝑣2 may also depend on 𝑣1, as handling the requests in
the flow involves added work. Both of these patterns exist in the
incident shown in Figure 1. But either of these possible influences
might turn out to be negligible, if, for instance, the flow was log-
ging information in the background and not involved in the web
front end’s primary traffic. These and other possibilities cannot be
discerned only through metadata. Past works such as Orion [14]
try to automatically infer the direction of influence, but require fine
grained (≈ 10 ms) timing information of every single request. This
is out of scope for our enterprise environment.5 Hence we add an
association in both directions as an over-approximation of actual
influence, creating many additional cycles and leaving it to the
4In fact, [33] identified lack of cycles as an unrealistic aspect of current microservices
testbeds.
5If more detailed, accurate telemetry were available – for example, via eBPF – Murphy
could use it. However, true cyclic dependencies will still be present.

440



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Vipul Harsh et al.

Crawler
Machine

Frontend
Server Backend 

Servers

ToR Switch

Host

VM VM VM
vNIC vNIC vNIC

Host

VM VM VM
vNIC vNIC vNIC

Host

VM VM VM
vNIC vNIC vNIC

Host

VM VM VM
vNIC vNIC vNIC

Flow 1: Crawler  à Frontend
Flow 2: Frontend à Backend 1
Flow 3: Frontend à Backend 2

Flow 1
Flow 2

Flow 3

Flows VMs ToR switches
2502 3640 12
vNICs Hosts Switch ports
1187 136 1661

vNIC

Crawler
VM

Flow 1

Flow 3

Flow 2

vNIC vNIC

vNIC

Frontend
VM

Backend
VM

Backend
VM

ToR
Switch

Host

Host

Host

Host

Root 
Cause

Heavy
Hitters

High 
CPU

VM

Figure 1: Production incident. Shown at the top is a phys-
ical topology associated with an incident where a crawler
VM was sending too many queries to the frontend at a high
rate. This resulted in the front-end initiating a large num-
ber of requests to the backend, causing high CPU load and
application unresponsiveness. The bottom figure shows the
relationship graph corresponding to the physical topology
that Murphy built to analyze this incident. Only a subset of
the entities are shown but the top left table enumerates the
total no. of entities in our relationship graph. On analysis,
Murphy correctly ascertained flow 1 as the root cause for the
high CPU load at the backend and flagged it for the operator
to handle.

diagnosis algorithm to reason about actual influence in a particular
incident.

The above effects combine so that cycles are the norm. Across our
data set of 13 incidents in our enterprise environment, on average,
the relationship graph had over 2000 cycles of length 2 and over
4000 cycles of length 3, and all VMs of affected applications in every
incident were involved in at least one cycle.

2.3 Related work
There is a broad set of work that attempts to automate various
aspects of troubleshooting, such as routing incoming tickets to the
right team [18], orchestrating active probes to check availability or
latency [21], localizing faults [4, 10, 11, 19, 23, 35] like links silently
dropping packets and also performance diagnosis [16, 25, 27]. It is
helpful to understand work in two main subareas.

Fault localization. A rich body of work [10, 11, 14, 26, 28, 31,
35, 38] performs fault localization, distinct from ours, in which
components have well known quantifiable failure signatures. For

example, Sherlock [11] models entities as being in one of three
states (up, troubled, or down), and other works focus on even more
specialized faults than Sherlock, e.g., physical network packet drops
or link loss or delay [10, 28, 35, 38]. In contrast, our work is intended
for performance diagnosis, where there is not a common definition
of failure signature and diagnosis seeks to answer richer metric-
related questions of the form “which component’s performance
metrics influence the observation the most?”

We considered trying to repurpose the underlying models of
the above work for our goals, but their models do not meet the
needs of our environment. [11, 14] rely on detailed models of how
an entity depends on another, obtained through fine-grained (e.g.,
10 ms granularity) packet timing which is not available in general
enterprise environments. Also, as noted in [27], Bayesian tech-
niques [11, 26, 31, 38] can only model acyclic dependencies; the
cyclic case is fundamentally more challenging due to the result-
ing complex interactions among entities. We have to work with
entity topologies that contain many cycles, due to lack of detailed
dependency knowledge as well as true cyclic influence.

Performance diagnosis. Performance diagnosis tools solve a
problem that is closest to ours. We therefore discuss them in more
detail.

ExplainIt [25] performs pairwise correlations between metrics of
the observed problem and of each candidate root cause.6 However,
as we will show, simple metric correlation-based analysis can yield
inaccurate results as it does not take into account the topological
structure between entities.

NetMedic [27] uses a dependency graph to capture the known
entity dependency structure. It labels edges with weights based
on pairwise correlation between neighbors using historical metric
values, augmented with heuristics to reduce weights when metric
values are roughly normal, and remove or coalesce redundant or
aggregate metrics. Finally, it ranks root causes based on a geometric-
mean of path weights, and a score of the global downstream impact
of the candidate root cause. This approach can have a similar limi-
tation as ExplainIt due to use of pairwise correlations. In general,
NetMedic’s inference is based on fixed heuristic rules (ignoring
“normal” influence, geometric-mean weighting, etc.) which can be
brittle in real environments. In our tests, NetMedic’s accuracy was
low, except with lenient definitions of the root cause (§ 6). This
suggests to us that more powerful and flexible learning-based ap-
proaches are needed.

Sage [16] uses a probabilistic distribution over metrics to identify
the resources in a microservice that cause QoS violations. While its
model can do the sort of flexible reasoning we target, it employs a
large neural network superimposed on a directed acyclic graph rep-
resenting causal dependencies between microservices. It is unclear
how to adapt this model to handle cycles. Cycles are the common
case in our target environments, even microservice-based environ-
ments (§ 2.2). Using data like the enterprise monitoring telemetry
we work with – where there are numerous cycles amid hundreds of
applications of essentially arbitrary functionality – there is no clear
way to produce an acylic graph. As we show later, not handling
cycles results in not being able to model all relationships which
6ExplainIt also was designed to answer multi-node conditional correlation queries
interactively posed by the user, which is an assisted rather than fully-automated
diagnosis that falls outside our use case.
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ultimately makes Sage incapable of producing the right root cause
(§ 6.1), so it is effectively inapplicable in such environments.

Provenance-based troubleshooting systems [13, 22, 34, 36, 37]
track all events and the causality between them to find the root
cause of a performance error using the event DAG. However, obtain-
ing such detailed monitoring data requires request- or packet-level
tracing which is not feasible in most enterprise networks.

2.4 Summary of goals and existing methods
In order to meet our goal of performance diagnosis for common
enterprise cloud environments, we need a scheme that (1) utilizes
common monitoring information, which implies handling complex
dependency topologies that lack detailed dependencies and con-
tain many cyclic relationships; and (2) achieves high accuracy. To
the best of our knowledge, past approaches do not achieve these
goals. Yet we can draw two important ideas from past work. First,
NetMedic’s idea of using an arbitrary directed graph to model de-
pendencies makes no assumptions about cycles, allowing us to
model directed dependencies where we have them, and use bidirec-
tional dependencies otherwise. Second, Sage’s approach involves an
idea of using counterfactual reasoning that offers a more principled
way to avoid the assumptions of heuristic-based approaches, by
phrasing diagnosis as a what-if question: If I changed metric 𝑀𝑟

to a certain value, what effect would that have on the problematic
metric 𝑀𝑜? However, for the reasons noted above, we will need
entirely new algorithms to make use of these high-level ideas in
our environment.

3 USING MURPHY FOR PERFORMANCE
DIAGNOSIS

We describe a typical troubleshooting experience with Murphy (see
Figure 2 for example inputs/outputs of the tool).

Let’s suppose an incident is reported in the IT infrastructure
about a client facing service foo experiencing performance degrada-
tion. IT admins can run Murphy providing, as input, a problematic
symptom – a problematic metric𝑀𝑜 of an entity 𝐸𝑜 they want to
know the reason for. This could be, for example, high memory us-
age of a SQL server used by foo. The problematic symptoms can
also be obtiained via other methods such as by finding all entity
metrics related to an affected application that are above thresholds
preset by operators or via automated tools such as [15]. As the
identification of problematic symptoms is not central to our design,
we refer to Appendix A.1 for a more detailed discussion.

For each problematic symptom (𝑀𝑜 , 𝐸𝑜 ), Murphy outputs a
ranked list of root cause entities for that symptom. Additionally,
for each root cause entity, Murphy produces a causal explanation
chain tying it back to the symptom.

4 DESIGN
There are three parts to the Murphy system (Figure 2):
(1) The first part constructs the relationship graph using data ob-

tained from the monitoring system (§ 4.1).
(2) For each problematic symptom in the input, Murphy’s infer-

ence algorithm generates candidate root causes (§ 4.2) using a
Markov random field (MRF). TheMRFmodels a joint probability

Output

Diagnosis: what 
caused those 
problematic 
symptoms

Generate 
explanations

Problematic symptoms e.g., app 
foo’s high response latency

Monitoring 
database

Root cause with explanation
Root cause: Crawler machine
Entity A (Crawler machine) sent high requests to Entity B (front-end).
Entity B (front-end) sent high requests to Entity C (back-end).
Entity C (back-end) faced high load and CPU usage.

Build 
relationship 

graph

Murphy

Inputs

e.g., 

Figure 2: Murphy workflow

distribution of all entity metrics and is learned via historical
values.

(3) Murphy generates explanations for the root causes tying them
back to the problematic symptoms (§ 4.3).
Our core contribution is in the design of the MRF framework

which lets us utilize commonly available telemetry while producing
accurate results. We describe each part next.

4.1 Constructing the relationship graph
Murphy employs a relationship graph, where the edges between en-
tities are based on simple “neighborhood” relationships that are pre-
defined by the monitoring software and can be easily extracted from
the input. For example, a flow has edges to its source/destination
VM, a VM has edges to its host and NIC, a microservice has edges to
the container it resides on, and so on. This neighborhood definition
is deliberately loose in order to work with common monitoring
telemetry that doesn’t have information about causal DAGs. Note
this means that the relationship graph may have cycles.

To construct the relationship graph, Murphy makes an initial
query to the monitoring database to obtain descriptions of a set
of entities 𝑆 relevant to the problem. If the input to Murphy is
an affected application 𝐴, then 𝑆 is the set of all entities that the
system considers to be members of 𝐴. If the input specifies a prob-
lematic entity 𝑒 , then 𝑆 is the singleton set: {𝑒}. Starting from 𝑆 ,
Murphy constructs the relationship graph recursively by exploring
the neighborhood of 𝑆 and updating 𝑆 as 𝑆 = neighbors(𝑆). If the
relationship graph becomes intractably large, then optionally this
exploration is stopped after a few iterations. Figure 1 shows the
relationship graph for a real incident. For each entity in the relation-
ship graph, we also have timeseries data for various metrics (e.g.
CPU/memory/network usage for a VM, session count and bytes
sent/received for a flow, etc.).

By default, to be conservative, we add directed edges in both
directions between two neighbor entities A and B in the relation-
ship graph. The directed edges represent potential dependencies
in both directions A→B and B→A. If a directional dependency is
known between two entities, such as in the case of caller and callee
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Figure 3: Inference algorithm- evaluating whether 𝐴 is the root cause for 𝐷’s high metric value for a toy relationship graph
with only one metric per entity. For clarity, we draw an undirected edge to represent a directed edge in both directions. We (a)
change 𝐴 to a counter-factual value 𝐴∗, (b) resample 𝐵 assuming the new value 𝐴∗, (c) resample 𝐶, 𝐷 and 𝐸 in a similar way,
and (d) resample 𝐶, 𝐷 and 𝐸, again 𝑔 times for Gibbs sampling. We run the same resampling algorithm, this time starting with
the current true value of 𝐴, instead of a counterfactual, and obtained the resampled value 𝐷′′. After this sampling process, if
𝐷′ ≪ 𝐷′′, then we classify 𝐴 as a root cause for the high value of 𝐷 .

microservices [16], then Murphy can incorporate that via a single
directed edge. This design ensures that entity dependencies can be
captured in the most general way and allows Murphy to work with
commonly available telemetry information that may not include
information about causal dependencies.

4.2 Performance diagnosis
For each problematic symptom (𝑀𝑜 , 𝐸𝑜 ) provided as an input (§ 3),
Murphy separately runs the performance diagnosis algorithm.

The relationship graph lends itself naturally for performance
diagnosis via an appropriately designed graphical model. Markov
random fields (MRFs) are one such family of probabilistic models. A
MRF is a probability model superimposed on a graph that may have
cycles, making it suitable to reason about entities in a relationship
graph (§ 4.1). While acyclic causal edges make Bayesian networks
easy to understand, a MRF is harder to interpret making it more
challenging to apply. For the same reason, inference algorithms for
Bayesian networks [11] don’t apply to MRFs.

We’ve designed a MRF framework, according to the needs of our
environment (§ 2.1), with available telemetry and its scale as the
focus. We describe the MRF framework in two sub-parts: (a) model
and (b) inference algorithm.
Model: To reason about a problematic (entity, metric) symptom,
provided as input (§ 3), Murphy models the distribution of metrics
for all entities as a MRF; call this distribution 𝑃𝐺 . 𝑃𝐺 denotes the
joint probability of all entity metrics taking certain values and is
calculated using a general directed relationship graph, that can
potentially have directed cycles. 𝑃𝐺 is defined as a product of indi-
vidual entity factors 𝑃𝑣 for every entity 𝑣 :

𝑃𝐺 =
1
𝑍

∏
𝑣:𝑉 (𝐺 )

𝑃𝑣 (𝑣 |in_nbrs(𝑣)) .

In the above,
• 𝑉 (𝐺) denotes the entities in the relationship graph 𝐺 .
• in_nbrs(𝑣) denotes the set of neighbor entities𝑤 such that there
is an edge from𝑤 to 𝑣 in the relationship graph.

• 𝑃𝑣 is a function that takes as input, the values of metrics of 𝑣 and
𝑣 ’s incoming neighbors (in_nbrs(v)), and outputs a probability
score between 0 and 1.

• 𝑍 is a (unknown) normalizing constant that ensures the proba-
bilities add up to 1. The inference algorithm does not require the
value of 𝑍 .

The relationship between an entity’s metrics and its neighboring
entities can be complex and variable across entities. Hence, the
function 𝑃𝑣 is determined by relating metrics of entity 𝑣 in a time
slice to the metrics of the neighbors of 𝑣 in the same time slice.
Specifically, Murphy learns a multivariate distribution for 𝑃𝑣 , for
all 𝑣 , using a standard model such as linear regression with normal
error, Gaussian mixture model (GMM), neural networks or SVMs
using historical metric values. Different models could be suitable
in different environments. The right choice of model can be deter-
mined by analyzing training errors in learning 𝑃𝑣 across several
entities 𝑣 . In our production environment, we found ridge regres-
sion (a form of robust linear regression) to work best, evaluated
using a large real world dataset (§ 6.6.1). Hence, we employ Ridge
regression in Murphy for all our experiments.
Model training: Murphy doesn’t keep any pre-trained models;
every time Murphy is called, online training is triggered. Training
online on fresh data has three advantages over training offline: (a)
Applications get updated frequently, e.g. the application topology
or software version might change from time to time. Using a model
trained on outdated application topology or outdated software
may not be ideal for diagnosis. (b) Online training eliminates the
inconvenience of storing and maintaining a large number of entity
models 𝑃𝑣 . (c) Most importantly, an operator will run Murphy in
the middle of an incident, so, with online training, the last few data
points in the training data are from during the time of the incident.
This turns out to be crucial (§ 6.5.1) as often an incident involves a
pattern of metrics which hasn’t occurred in the past (§ 6.2).

Every timeMurphy is called, we train the linear regressionmodel
for each 𝑃𝑣 using data from one week prior to the incident, which
in our environment constitutes of a few hundreds time points for
training. We didn’t exhaustively explore all possibilities for the
training period length, but found one week to be reasonable given
using older data for training might include stale patterns from older
app deployments as apps constantly get updated (also see § 6.5.2). A
valuable area of future work would to be fully explore the tradeoff
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between using more data vs. fresher data, which could even depend
on the specific incident.

Using a large number of features may cause overfitting when
the training data is small. Hence, guided by the “one in ten”
thumb rule [5] for regression problems (use at least 10 observa-
tions/parameter), we pick the top 𝐵 = 10 neighbor metrics, based
on their correlation with 𝑣 ’s metrics (number of parameters is also
𝐵 in a linear regression model). We also tried 𝐵 = 5 and 𝐵 = 20 and
found training error to be within 3% of 𝐵 = 10.
Inference algorithm: The distribution 𝑃𝐺 provides a powerful
way to reason about entities and their states. We describe the algo-
rithm using a toy example, shown in Figure 3. Let’s say we want
to determine what caused a high CPU utilization at server 𝐷 . To
evaluate if another entity 𝐴 in the relationship graph (not necessar-
ily 𝐷’s neighbor) might be responsible, we change the value of 𝐴’s
metric to a “counterfactual” value 𝐴′, keeping the value of all other
entities unchanged. Using a Gibbs-sampling like algorithm, we then
resample 𝐷 via the MRF to get a new value 𝐷′, starting from the
“counterfactual” value 𝐴′ and E, where E represents the original
value of all entities besides 𝐴 and 𝐷 . We note that for resampling
𝐷 , the sampling algorithm will have to first resample other entities
via which 𝐴 would affect 𝐷 . We refer to this sampling algorithm as
𝑃𝐺 (𝐷 |𝐴′, E) which is described in the next paragraph. Intuitively,
if this new CPU utilization 𝐷′ is less than 𝐷 , we can conclude that
𝐴 is a contributor to the high CPU utilization at 𝐷 . This proba-
bilistic “what-if” analysis is referred to as the counterfactuals [20]
technique. We use this idea to find out which entities can alleviate a
problematic symptom (a problematic metric of an entity). Note that
Murphy runs this inference algorithm on the current metric values
whereas the training happens on the prior one week’s metrics.

The last piece in the algorithm is the sampling method to sample
𝐷 from 𝑃𝐺 (𝐷 |𝐴, E) for entities 𝐴 and 𝐷 , which are not necessar-
ily neighbors. Gibbs sampling is commonly used to sample from
a MRF [29], but it entails executing several iterations of “pick a
random entity and resample it given its neighbor entities”. There
are two problems with running exact Gibbs sampling. (a) It would
be computationally too expensive in our environment since the
relationship graph could have several thousands of entities. (b) We
want to preserve the values of entities that are likely unrelated to
𝐴 but might affect 𝐷 . Running the sampling algorithm on those
entities might destroy their values. Instead, we resample only a
subset of entities that are on paths from 𝐴 to 𝐷 . We thus use a
variant of the Gibbs sampling algorithm (illustrated in Figure 3 and
detailed below).

Putting all the pieces together, the algorithm is as follows:

(1) We set the value of 𝐴’s metric to a lower/higher counterfactual
value: 𝐴′, that is 2 standard deviations away from its current
value.

(2) We consider the entities in the shortest path subgraph from
𝐴 to 𝐷 , defined as T . For each entity 𝑣 in T , ordered in in-
creasing distance from 𝐴, we resample the metrics of 𝑣 from
𝑃𝑣 (𝑣 |in_nbrs(𝑣)). The last step of this process, therefore, gives
us a new sample value for 𝐷 .

(3) We repeat step (2) for𝑊 = 4 iterations (see § 6.6.2 on how
we picked𝑊 ). Sampling nodes more than once, as in Gibbs

Non-
functional

Degraded 
performance

(high latency, low 
throughput)

High drop 
rate

Heavy hitter
(high throughput, 

session count, 
load)

Figure 4: State machine encoding causal rules between enti-
ties’ states for generating labeled explanation chains

sampling, helps to propagate effects across cycles in the graph
(§ 6.6.2).

(4) Let 𝑑1 be the sampled value for 𝐷 thus obtained after step (3),
having started with the counterfactual value 𝐴′ in step (1). We
also run the procedure (2)-(3), but this time start with the current
true value of𝐴, instead of the counterfactual value𝐴′, obtaining
sampled value 𝑑2. Then, we generate many such samples (5,000
in our implementation) for each of 𝑑1 and 𝑑2 via steps (1)-(3). If
the 𝑑1’s are significantly less than 𝑑2’s (decided via a T-test), we
conclude that 𝐴 is a root cause for 𝐷 . In our implementation,
we generate 5000 samples for 𝑑1 and 𝑑2 each for the T-test.
We note that Gibbs sampling helps in propagating newer values

across cyclic dependencies in the model. Let’s say we need to resam-
ple a set of entities T . Consider a cyclic dependency 𝐴 → 𝐵 → 𝐴

where 𝐴, 𝐵 are entities in the set T . If we only resample entities in
𝑆 once and say we sample𝐴 before 𝐵, the newer value of 𝐵 does not
propagate across the dependency from 𝐵 to 𝐴. Resampling 𝐴 and
𝐵 multiple times, as done in Gibbs sampling, solves this problem
partially and improves accuracy (§ 6.6.2).

For each entity in the relationship graph, Murphy evaluates if
its a potential root cause using the above algorithm. Murphy limits
this search space of potential root cause entities via the following
method: it runs a breadth first search starting from the problematic
entity, exploring neighboring entities that have metrics above very
conservative thresholds, while pruning out the rest. This reduces
running time and improves precision. For fairness, we provide this
pruned search space to all reference schemes that we compare with
in our evaluation (this improved their accuracy).
Ranking the root causes: Once Murphy’s inference algorithm
produces the root cause entities, we rank them based on how anoma-
lous their current metrics are. To do so, we consider how many
standard deviations away a metric is from its historical mean value,
which translates to a score for a single metric of an entity. We set
the entity’s score to be the score of its most anomalous metric. The
ranking between the root cause entities is inversely proportional
to this score.
Correlation vs causation: Note that as in [25, 27], the resulting
candidate root causes have been determined to be correlated with
the problem, but causality has not been determined. In the absence
of precise information about causal dependencies between entities,
Murphy does not guarantee causality between the root cause and
the observed problems, but the candidate “shortlist” of potential
root causes it outputs is still useful (as we will show later via exper-
iments), since correlation is a necessary condition for the failure
types within scope of Murphy.
Edge cases: Historical metric values may be missing for a newly
introduced entity. To construct the training set for our algorithm
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in such a case, we use a default metric value (such as 0% for CPU
usage) as a placeholder for missing values. Murphy also presents
all recent configuration changes to the operator to catch problems
caused by recently spawned VMs. Although the MRF framework
captures a wide range of practical cases such as high CPU usage of
a VM, high drop rate of a NIC, high latency of a service etc., other
failure types are outside Murphy’s scope (see § 7).

4.3 Explaining the diagnosis
Once Murphy finishes diagnosis and the candidate root causes have
been found, we also generate human-readable explanations for
them.We first assign one of the following labels to each entity based
on their current metrics and conservative thresholds7: Faulty/Non-
functional; Degraded performance; High drop rate; Heavy hitter;
Okay.

We encode prior domain knowledge about causal truths using a
state machine (Figure 4). Each node is a possible label state and the
arrows indicate causal truths e.g. “Heavy hitter flow can cause high
drop rate on a virtual NIC” or “Heavy hitter flow can cause high
load on a VM”. Although simple, such a labeling scheme produces
semantically meaningful explanations for each root cause. Once
we’ve decided the entity labels for every entity, we trace paths from
root cause to affected application entities in such a way that each
edge in the traced path respects the label causality rules described
above. Note that this step does not affect the selection of root causes,
and hence does not affect accuracy. We found it was convenient to
provide plausible intuition for those root causes.

5 IMPLEMENTATION AND SETUP
We implemented Murphy in Python with ∼7K LOC. For reference
schemes, we used the author-provided implementation for Sage
and our own implementation of NetMedic and ExplainIT as their
code wasn’t available publicly. We test the schemes in two environ-
ments: (a) a cloud environment of a large enterprise running many
production applications and (b) microservice-based applications
(from the DeathStarBench suite [17]) running on private servers
and a public cloud environment (AWS).

5.1 Setup and datasets
For our evaluation, we utilize datasets from two environments.

5.1.1 Datasets from apps in production environment: We uti-
lize two real world datasets that we collected from a commercial
network observability platform (§ 2.1) monitoring the production
infrastructure of a large enterprise.
Incident dataset: We describe our experience with a dataset of
13 real incidents (Table 1), with varying complexity and resolution
times ranging from a few minutes to a few hours.

For each incident, we collected data for entities up to four hops
away in the relationship graph from the affected entities (e.g. “all
VMs of application foo”).8 We extracted the entities involved in
the resolution from the trouble ticket, and treat that as the ground
725% CPU/memory/disk/port utilization, 0.1% drop rate, 50 TCP sessions or 1GB byte
count for a flow in a single time interval.
8As this environment is a private cloud, both virtual and physical entities are visible
to the enterprise’s monitoring platform and are included in the relationship graph in
this data set.

truth. We note however that this human-operator-decided ground
truth may not always be the true root cause (e.g. the root cause
was heavy load caused by a flow session that originated elsewhere
but went away after rebooting all application VMs, and the reboots
were stated as the resolution).
Metrics dataset: We collected metrics of ∼17K entities associated
with over 300 production applications, for a period of a week. This
data on its own is not sufficient to evaluate diagnosis accuracy as
it does not come with information about failures. But, we can use
it to run micro-benchmarks to evaluate model training accuracy,
test various subroutines of the algorithm and fine-tune Murphy’s
algorithms on large scale production data.

5.1.2 Datasets from microservices in public clouds: We ran two
microservice apps from DeathStarBench [17]:
• Hotel-reservation on a dedicated 7-node Kubernetes cluster
hosted on AWS (across multiple availability zones in us-east-
2) with each node provisioned with 4-core Intel(R) Xeon(R) series
CPU, 16 GB of RAM, 32 GB of SSD, and up to 5 Gbps bandwidth
capacity.

• Social-network hosted on a single-node environment on a pri-
vate cloud. The node was provisioned with 8 Intel(R) Xeon(R)
series CPUs and 32 GB of RAM. The microservice applications
are orchestrated using Docker with all inter-container traffic
traversing through localhost.

The hotel-reservation app comprises 8 services and 16 total re-
lationship graph entities including containers and services. The
social-network app comprises 24 services and 57 total entities. We
obtain metrics of the application entities from two sources, viz., (1)
container metrics like average CPU/memory/disk/network usage
from Cadvisor [1], aggregated over 10 second intervals and (2) mi-
croservice service latencies by aggregating the individual response
latencies, also over 10 second intervals. We use wrk2 [8], an open-
loop workload generator to send requests to the application. We
get the request traces via Jaeger [2].

We create multiple types of failure scenarios in these microser-
vice environments:
• Performance interference: We set up two clients, A and B,
who send requests to two different API endpoints, service 1 and
2 respectively. The API call trees of service 1 and 2 share some
common backend services as shown in Figure 5a. Client A gener-
ates a high request load, overwhelming a subset of these shared
downstream microservices. As a result, response latency of ser-
vice 2 increases (see Figure 5b) impacting the latency observed
by client B. The problematic symptom that we provide to the
tool to diagnose is client B’s observed latency and the true root
cause is high RPS load of client A. We generate 32 variants of
such scenarios by changing the RPS load sent to the services.
This failure scenario was motivated by the production incident
mentioned in § 4 (Figure 1).

• Resource contention: using stress-ng, we inject CPU, mem-
ory and disk faults to randomly chosen application containers,
as in [16]. We generate more than 200 such fault scenarios across
both the setups, varying intensity, duration (5-10 mins) and loca-
tion of the faults while client workload (30-90 minutes long) is
in progress.
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Figure 5: Performance interference experiment in DeathStarBench (§ 6.1). (a) Fault scenario: client A sends a lot of requests
to service 1 which overwhelms the downstream common services shared between service 1 and 2, causing high latency for
service 2 for Client B. “Common containers” are containers that “common services” reside on. (b) The fault gets injected just
after 3000 seconds when Client A begins to send a lot of requests. (c) Accuracy (recall) in top-K. (d) Precision and recall (see
§ 6.1 for definition) of various schemes in producing the true root cause. Also shown is a relaxed notion of accuracy which
measures how often a scheme gets at least one entity in top 5 that’s either the true root cause or a common container or a
common service.

6 EVALUATION

Evaluation goals: The goal of our evaluation is to investigate
Murphy’s diagnosis accuracy compared to reference schemes Sage,
NetMedic, and ExplainIT. We feed the same input relationship
graph to all schemes when possible (i.e., if the algorithm can take
it as input). We first evaluate scenarios in our enterprise environ-
ment and an emulatedmicroservices environment which commonly
have cyclic dependencies. Second, to enable comparison with Sage,
we also consider a restricted set of scenarios where there are no
cyclic dependencies between entities as done in [16]. We evaluate
how robust each scheme is in handling degraded data with omis-
sions/errors, which can be present in common telemetry. We then
show several microbenchmarks to quantify the effect of the design
choices and algorithmic subroutines of Murphy. Finally, we discuss
the runtime performance and the sensitivity analysis.
Measuring accuracy:We measure Top-K accuracy, equivalently
called recall, defined as the fraction of times the true root cause
entity is among the first 𝑘 entities in the ordered list of candidate
root causes generated by the scheme. We use K=5 unless stated
otherwise.

We also show precision, defined as either 1/𝑟 if the scheme out-
puts the true root cause as the 𝑟 th candidate, or 0 if the output does
not include the true root cause at all. The intuition for this is the
operator will start at the top of the list and will have to check 𝑟

suggestions before finding the right answer, and any false positives
ranked beyond 𝑟 won’t matter.

6.1 Performance interference in microservices
We consider the performance interference failure scenarios de-
scribed in § 5.1.2 where high load at service 1 overwhelms the
common downstream microservices it shares with service 2, caus-
ing high latency for service 2. Tomodel the effect of the two services
on each other, the relationship graph should have a path from ser-
vice 1 to service 2 and vice-versa. This however induces a cycle in
the relationship graph. Sage’s model can’t handle such cycles, and
hence only models a single user-facing service and its downstream

Incident (observed problems) Murphy
FPs

NetMedic
FPs

ExplainIT
FPs

1. Two apps nodes crashed due to a plugin 6 69 93
2. App returning a 502 error 0 1 0
3. App unavailable 4 40 60
4. App slow, experiencing timeouts 10 4 4
5. App unavailable 1 1 1
6. App redirecting to a maintenance page 4 1 1
7. Heap memory issue with a node 1 1 1
8. App performance degradation 6 67 189
9. App failing with 503 error 1 1 1
10. Health check failing on 2 nodes 2 2 23
11. App redirecting to a maintenance page 6 10 22
12. Slowness in loading data 20 101 21
13. Performance alert about a node

exceeding thresholds 0 0 0

Average false positives 4.9 23.2 32.3
Table 1: Number of false positives (FP) produced by each
scheme for each incident, according to operator decided res-
olution (see § 6.2), for incidents in the dataset. Only FPs are
shown, rather than false negatives, because the schemes were
calibrated to have similar false negatives (§ 6.2).

services. As a result, the true root cause (service 1) falls outside its
model, preventing Sage from catching it.

Figure 5c shows Top-K accuracy for varying K and Figure 5d
shows the precision and recall for K=5. Murphy produced the true
root cause in the top-5 86% of the times, while Sage, on account
of the true root cause being outside its model, did not produce the
true root cause (service 1 in our example) in any case (i.e. 0 recall).
Other schemes also did not produce the true root cause most of the
times (accuracy < 15%).

Can Sage get close to the root cause, while working within the
scope of its model? Specifically, identifying the common containers
that are overwhelmed may be a helpful step towards the true root
cause. To test this, Figure 5d also shows a very relaxed notion of
recall: a scheme achieves 100% recall if its top-5 contains at least
one entity that is either the true root cause, a common container
or a common service. Relaxed precision is defined similarly: it is
inversely proportional to the number of false positives seen by the
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Figure 7: Various microbenchmarks with Murphy. Fresh data
implies that Murphy was trained with data that included
several minutes during which the incident was in progress.

operator before one of the “relaxed”-root causes is produced by a
scheme. Murphy achieves perfect relaxed-recall while NetMedic
also has good relaxed-recall of 0.81. Murphy has significantly bet-
ter relaxed-precision and relaxed-recall than Sage, NetMedic and
ExplainIT.

6.2 Incidents in production environment
Table 1 shows the number of false positives (FPs) produced by
NetMedic, ExplainIT and Murphy for each of the 13 incidents in
the incident dataset (§ 5.1.1) from the production environment.
The table shows only FPs, because the schemes were calibrated to
have similar false negatives.9 Sage is incapable of working in this
environment as it requires a causal DAG of dependencies which
we don’t have. This major limitation prevents us from using Sage
in our production environment.

9We calibrated each scheme’s parameters to minimize false positives under the con-
straint that they produce recall = 1 (equivalently, zero false negatives) on a certain
set of “calibration incidents”. On the full set of 13 incidents, recall was not quite iden-
tical across all schemes, but was very close– all schemes had a recall in the range
[0.53, 0.56].

The calibration incidents were the 2 incidents for which we had full certainty in
the ground truth via discussions with operators. Recall that in general, we took ground
truth to be the entities involved in the operator’s resolution of the incident, which in
some cases may not be the true root cause.

As can be seen from Table 1, Murphy overall produced 4.7x fewer
false positives than NetMedic and 6.6x fewer than ExplainIT. We
observed that for some incidents, both NetMedic and ExplainIT
produced many false positive root cause entities that were highly
correlated with the problem while Murphy was able to prune them
out (incidents 1, 3, 8 and 12).

We remark on some incidents below, including discussions with
network operators about the utility of Murphy’s analysis:

• For incident 2 in Table 1 (illustrated in Figure 1), Murphy correctly
identified the root cause entity. We validated both the root cause
and the explanation produced by Murphy by talking to network
operators. The top explanation chain produced by Murphy for
this incident was:
– Heavy-hitter flow from crawler VM (true root cause)
→ Front-end VM
→ Heavy hitter flow
→ High CPU on backend VM

• In one incident, 2 nodes failed health checks. Murphy flagged
flows that were sending high traffic to the nodes. However, the op-
erators rebooted the nodes to resolve the incident, so the operator-
decided ground truth did not include the flows.

• In another incident, operators were unable to pinpoint the root
cause of an incident that lasted only for six minutes. Interestingly,
a similar incident occurred after a few weeks. Murphy flagged
two flows, which were likely due to network upgrades, as culprits.

6.3 Resource contention in microservices
We consider the resource contention failure scenarios (§ 5.1.2) which
don’t have any cycles. Sage was designed for such scenarios [16].
Figure 6a shows the response latency in a sample scenario. For
realism, as in [16], we induce up to 14 “prior incidents” where short-
lived faults are injected on randomly chosen containers before the
actual incident. Refer to § 6.5.3 for accuracy when there are no prior
incidents.

Figures 6b, 6c show the accuracy in producing the right root
cause in the top K for varying K on the x-axis. Murphy produced the
true root cause with high accuracy (overall, 77% as the top candidate
and 83% of the times in top-5) and had a somewhat higher accuracy
than Sage (69% in top-1 and 77% in top-5). ExplainIT looks at the

447



Murphy: Performance diagnosis for distributed applications ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

entity whose metrics are most correlated with the high latency of
the client and ends up producing entities that are closest (in the
microservice communication graph) to the problematic entity such
as the front-end container. NetMedic did not perform adequately,
likely because of assumptions in its ranking heuristics: we found
that its geometric mean based path weights can produce entirely
unrelated subtrees of entities in the microservice graph.

6.4 Accuracy with incomplete data
Table 2 shows accuracy when the data is “corrupted” with some
omissions or errors. Such errors can exist in the monitoring data
for large infrastructure and hence a diagnosis scheme should be
robust to them. To ensure a comparison with Sage, we use the same
setup as § 6.3 with no cycles. We evaluate four such cases where
we introduce errors in the monitoring data:
• Missing edge: we remove the association between a randomly
chosen RPC and its parent (caller) RPC

• Missing entity: we remove a randomly chosen entity, including
all its metrics and associations

• Missing metric: we remove a single metric (e.g. memory usage)
for the root cause entity

• Missing values: for randomly selected 25% of the entities, we
remove their historical values (except for the values during the
incident itself, which is still present)
Such errors could arise from bugs in the tracing framework (miss-

ing edge), or missing coverage inmonitoring (missing entity/metric)
or a newly spawned entity (missing values). As can be seen from
Table 2, both Murphy and Sage are fairly robust, incurring 6% and
10% loss respectively. Missing values have a minimal effect on Mur-
phy since the most recent data related to the incident is still present
(see § 6.5.3 and § 6.5.1); it affects Sage significantly likely because its
neural networks require more data points to learn the right pattern.

6.5 Microbenchmark experiments
We describe “microbenchmark” experiments where we evaluate
various aspects of Murphy’s design.

6.5.1 Online vs offline training: Murphy learns the distribution
online from past metrics of one week so that the training data
includes some recent data points when the incident has happened.
Another alternative could be to train the system offline, so that
training time is not a concern and potentially more training data
can be used (as in [16]). However, as the bar labelled trained offline
in Figure 7 shows, not including the incident data points results in a
drastic drop in accuracy from 90% to 15% on the resource contention
scenarios (§ 5.1.2). To aid offline training, we used scenarios with
maximum prior incidents (=14). This poor accuracy on debugging
incidents not seen before drives our design choice to train Murphy
online, every time it’s called, on the latest data. Although Sage
originally was designed to be trained offline, for fairness, we also
train Sage online which yielded higher accuracy for Sage.

6.5.2 Effect of length of training data: The last 3 bars of Fig-
ure 7 show Murphy’s accuracy with 3 different lengths of training
durations on the setup in § 6.3. Murphy’s accuracy improves sig-
nificantly from 87% with 128 points to 95% with 4x more training

Scheme Missing
values

Missing
edge

Missing
entity

Missing
metric

Aggregate
(avg(1-4))

Unchanged
input

Murphy 0.84 0.75 0.78 0.81 0.80 0.86
Sage 0.64 0.67 0.66 0.82 0.70 0.80

NetMedic 0.16 0.20 0.16 0.22 0.18 0.22
ExplainIT 0.05 0 0 0 0.01 0

Table 2: Robustness: Accuracy with degraded/incomplete
data. Numbers show recall in top-5. ExplainIT was designed
for a different use case – as an interactive tool for queries
posed by the user, hence its accuracy was low for automated
diagnosis. Both Sage and Murphy were fairly robust.
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Figure 8: (a) Errors in predicting the metrics of an entity,
given the metrics of all its neighbors across 17K entities
spanning 300 production apps. (b) Gibbs sampling improved
accuracy of prediction across multiple hops, consistent with
the existence of cyclic effects in the production environment.

data. There’s a tradeoff between using longer training data and the
running time since the training happens online in Murphy, when
the tool is run by an operator. We found using the prior one week
of historical data to be a good tradeoff point in our production
environment (§ 6.2). The application characteristics like topology,
configs, application version, workload, etc., also change from time
to time, which is another reason to train only on recent metrics.

6.5.3 Accuracy with no prior incidents: Often, the root cause for
a problematic symptom involves a pattern of metrics that hasn’t
been seen before. Being able to reason about such scenarios is
crucial for Murphy’s usability. To test such cases, we generated 64
traces using a similar setup as § 6.3, each with no prior injected
incidents. Since Murphy learns the distribution online, the training
data still includes data from the current incident which needs to be
diagnosed (see § 4.2). Figure 7, in the bar labelled no prior incidents,
shows that Murphy correctly produces the true root cause 78% of
the times in the top-5 and 62% of the times as the top root cause
candidate.

6.6 Testing Murphy’s internal components
6.6.1 Comparing metric prediction models: Recall that Murphy

internally reasons about root causes using a metric prediction
model, that predicts how a change in one metric will affect others
in the relationship graph. Here we test accuracy of the prediction
model, using various methods of learning the model. Testing just
this model doesn’t require incidents, so we can leverage our much
larger metrics dataset (§ 5.1.1).
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Figure 8a shows the CDF of absolute error in predicted values
across 17K entities from the metrics dataset, when using Ridge,
Gaussian Mixture Model (GMM), SVM, and neural networks10 as
the metric prediction model. We found that Ridge linear regression,
a variant of robust linear regression, works the best in our produc-
tion environment. We believe neural networks pose a challenge
because the number of available training data points is small (a few
hundred).

6.6.2 Verifying existence of cyclic effects: To evaluate whether
accounting for cyclic effects in the model improves the training
accuracy in our production environment, we design an experiment
to measure the effect of changing flow entities’ metrics on a back-
end SQL server that’s multiple hops away from the flows. Figure 8b
shows that running more than one round of Gibbs sampling in the
resampling algorithm (§ 4.2) increases accuracy by 5-10%. Here, we
define accuracy as the number of cases where the metrics of the
backend SQL server was correctly predicted (see appendix A.2 for
more details). Since running more rounds of Gibbs sampling prop-
agates cyclic effects in the relationship graph, this demonstrates
that handling cycles correctly boosts the metric prediction accuracy
and also confirms the existence of cyclic effects in our enterprise
environment.

6.7 Performance and handling scale
Murphy’s inference algorithm has a runtime complexity of𝑂 ((𝑁 +
𝑀)𝑇 + (𝑁 +𝑀)𝑊 ) where 𝑁 ,𝑀 are the number of entities and edges
respectively in the relationship graph,𝑇 is the number of time slices
in the monitoring data that the model gets trained on and𝑊 is
the number of Gibbs sampling iterations. For our incidents dataset,
N was typically a few thousands, M was roughly 10-20 times 𝑁 ,
𝑇 was around 300 and𝑊 was 4. Two components contribute to
Murphy’s running time in our production environment. First, for
the incident in Figure 1, it took less than a minute to fetch the
metadata and metric values from the database for over 10 thousand
entities – the typical size of the relationship graph. Second, Murphy
took ∼2 minutes on average to produce the root cause entities for
a problematic symptom, including the online training time. We can
optimize this further with parallelism and by leveraging a C++/Java
implementation (as opposed to Python).

6.8 Sensitivity Analysis
Murphy has some parameters, all of which can be tuned offline. We
discuss Murphy’s sensitivity to these parameters

• Gibbs sampling iterations (𝑊 ): Figure 8b shows that increasing𝑊
led to improvement in accuracy and in general higher𝑊 would
lead to higher accuracy by giving Gibbs sampling to converge
more quickly. A higher𝑊 also means a higher running time,
hence there’s a tradeoff. As Figure 8b shows, the marginal benefit
decreases with increasing𝑊 and so we settled on𝑊 = 4.

• Length of training data: We found a slight increase in accuracy
with an increase in the length of training data. Refer to the last 3
bars of Figure 7 and § 6.5.2.

10We tried small neural networks up to 3 layers, with 5 neurons each.

7 LIMITATIONS AND FUTUREWORK
While more advanced monitoring can be useful in some cases, e.g.
to attribute the high request rate of a VM to a software bug, it’s
important to have effective diagnosis tools based on commonly
available monitoring tools. Murphy’s entity-level localization is
already useful to operators; we leave diagnosis with advanced mon-
itoring for future work.
Failures outside Murphy’s scope: Although Murphy captures
many practical cases such as high CPU/drop rate of a VM, high
latency of a service etc., many scenarios are not covered, and could
be the subject of future work. One such case is where cause and
effect are separated in time, or metastable failures that persist even
after the trigger is removed [24]. Murphy might not handle non-
linearity in metrics (e.g. if load shedding kicks in after a threshold)
since its implementation uses linear regression. Using a different
learning model, such as neural networks, for Murphy’s MRF frame-
work might resolve this problem. Other examples include: failures
that are local to an entity (process or thread), which may require
finer-grained telemetry; software errors that don’t manifest in any
metrics and may be more suitable for program analysis [30]; and
scenarios where the root cause is because of an aggregated metric
of multiple metrics such as the combined session count of multiple
flows.
Using Murphy for performance reasoning: Murphy’s counter-
factual reasoning framework was useful for performance diagnosis,
and may also be applicable to other use cases. For example, it pro-
vides a way to evaluate the effect of a config change on a metric:
e.g., how would the response latency change if allocated CPUs of
the VM is increased by 2x? However, the required level of accuracy
for this use case may be different than for performance diagnosis.
Leveraging offline training: While online training works well, a
combination of offline + online training could still be leveraged; see
§ 6.5.1. This is common in the NLP domain [32] that has time-series
data similar to ours.

8 CONCLUSION
Performance diagnosis is a persistent challenge for enterprise in-
frastructure teams. In our work we found that making assumptions
about the performance relationships between components or using
fixed heuristics for inference harms diagnosis. Instead, we propose
using MRFs and learning-based methods that do not make these
assumptions for diagnosis in enterprise environments where rela-
tionships are rich and complex and evolve across time.We presented
a possible design for such an algorithm inMurphy. Murphy not only
meets the criteria for diagnosis in our production setup (by virtue
of handling complex, cyclic dependencies) but also outperforms
current diagnostic tools in their intended environments.
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A APPENDICES
Appendices are supporting material that has not been peer-
reviewed.

A.1 Identifying problematic symptoms
A trouble ticket may not directly specify a problematic symptom
in the form of an entity metric pair (𝑀𝑜 , 𝐸𝑜 ). How do we get from
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a ticket to a problematic symptom? In many cases, operators are
able to identify troublesome symptoms in an application e.g. high
user response times for a client-facing microservice, high resource
utilization of a backend machine, high drop rate at a VM etc.. Op-
erators can then specify problematic (entity, metric) symptoms to
Murphy that they want to find reasons for.

Optionally, this step can be skipped and Murphy will find prob-
lematic symptoms on its own by scanning the affected application’s
entities, looking for anomalous metrics in the current time slice
using preset thresholds 11. Alternatively, one could also use other
automated tools such as Revelio [15] to identify problematic symp-
toms that Murphy can diagnose, we leave this for future work.

For each problematic symptom, Murphy separately runs the
inference algorithm for performance diagnosis.

A.2 Verifying existence of cyclic effects:
supplementary

We wanted to evaluate if accounting for cyclic effects in the model
improves the training accuracy in our production environment.
Extensive testing in the real world is hard in the absence of the
ability to run controlled experiments.

To do so, we design an experiment to measure the effect of flow
entities on an entity that’s multiple hops away from the flows- a
backend SQL server. We picked from the metrics dataset of produc-
tion apps(§ 5.1.1)- 24 applications that had at least one SQL server.
For each application, we chose a randomly chosen backend SQL
server Q, and use correlation scores with 𝑄 to pick top 5 flows, say
flows’ 𝐹 , that sent requests to the front-end of the application. We
11conservative thresholds: 25% CPU/memory/disk/port utilization, 0.1% drop rate, 50
TCP sessions or 1GB byte count for a flow in a single time interval. In enterprise
environments, operators often configure such thresholds to receive alerts. Those
thresholds could be used too.
12We define closeness using a criteria that allows for a small additive error and a
constant multiplicative error characterized by constants 𝜖 and Δ, defined as: (Δ, 𝜖 )-
criteria: if the predicted change is 𝛿 and the actual change is 𝛿∗ , we say that the
algorithm is right if either 𝛿∗/Δ < 𝛿 < Δ.𝛿∗ or |𝛿 − 𝛿∗ | < 𝜖.𝑉 , where 𝑉 is the
maximum value of the metric seen so far.

then test if Murphy can predict the effect of changing metrics of
flows in 𝐹 , on the SQL server 𝑄 which is multiple hops away in
the relationship graph (see figure 9). More precisely, we take two
points in time 𝑡1 and 𝑡2 when 𝑄 had significantly different metrics.
Keeping the metrics value of all entities other than 𝐹 to be same as
𝑡1, we update the metrics of the flows 𝐹 to their values from 𝑡2. We
then run Murphy’s resampling algorithm (§ 4.2) to obtain predicted
metric values of the backend-SQL server-𝑀𝑄

𝑝𝑟𝑒𝑑
. We measure if the

predicted metrics𝑀𝑄

𝑝𝑟𝑒𝑑
is “close”12 to the real value𝑀𝑄 at 𝑡2. Fig-

ure 8b shows that running more than one round of Gibbs sampling
in the resampling algorithm (§ 4.2) increases the number of sce-
narios correctly predicted by 5-10%. Since running more round of
Gibbs sampling propagates cyclic effects in the relationship graph,
this demonstrates that handling cycles correctly boosts the metric
prediction accuracy and also confirms the existence of cyclic effects
in our production environment.
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Figure 9: Experimental setup for verifying existence of cyclic
effects. We change the values of the three flows in red and
measure how well our Gibbs sampling algorithm can predict
the corresponding change in SQL VM in black.

451


	Abstract
	1 Introduction
	2 Background
	2.1 Enterprise network monitoring
	2.2 The need for handling cyclic dependencies
	2.3 Related work
	2.4 Summary of goals and existing methods

	3 Using Murphy for performance diagnosis
	4 Design
	4.1 Constructing the relationship graph
	4.2 Performance diagnosis
	4.3 Explaining the diagnosis

	5 Implementation and Setup
	5.1 Setup and datasets

	6 Evaluation
	6.1 Performance interference in microservices
	6.2 Incidents in production environment
	6.3 Resource contention in microservices
	6.4 Accuracy with incomplete data
	6.5 Microbenchmark experiments
	6.6 Testing Murphy's internal components
	6.7 Performance and handling scale
	6.8 Sensitivity Analysis

	7 Limitations and future work
	8 Conclusion
	References
	A Appendices
	A.1 Identifying problematic symptoms
	A.2 Verifying existence of cyclic effects: supplementary


