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ABSTRACT
With the rapidly growing number of hosts connected to the internet,
there is an ever-increasing demand for fast and inexpensive switch
memory. At the same time, the number of network functions han-
dled at the switch, especially in the case of a programmable switch,
is increasing steadily (e.g., for the purposes of routing, telemetry,
load balancing), which require dedicated memory. Various compact
and efficient data structures (e.g., Bloom filters [15], ludo hashes
[10], cuckoo filters [3]) have been proposed in the past to address
these needs. However, these data structures can provide varying
performance depending on the distribution of the actual key-value
pairs they store. In addition, several of these data structures are
probabilistic in nature and hence also trade-off on accuracy to
achieve a lower memory usage.

In our work, we propose using data-driven approaches to ana-
lyze these key-value pairs (i.e., FIB lookup data) for patterns which
can aid in building more informed FIB designs. Primarily, we argue
that using an ensemble model comprising of hash tables and Bloom
filters (the composition as dictated by the data) can better meet the
specific requirements (processing speed, available memory, accu-
racy level) of the given switch. In this paper, we present a spectrum
of designs that are possible within this space and implement one
specific prototype. Finally, we present preliminary evaluation of this
prototype using enterprise network data to support our proposal.
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1 INTRODUCTION
Packet forwarding in typical network switches consists of four steps
(in the simplest form): receive the packet, extract the forwarding
information (e.g., destination IP address) from the packet header,
find the next hop for the packet by querying a lookup table, and
forward the packet to an output port corresponding to that next hop.
Switches make use of the Forwarding Information Base (FIB), which
maps destination addresses to next hops/output ports, to make such
forwarding decisions. To support ever increasing network speeds,
the FIB needs to be stored using a data structure which is efficient
to lookup, and scales well with increasing number of hosts. Such a
data structure needs to have a small memory footprint. Upgrading
switches with faster and more memory is not a viable solution as it
is cost prohibitive.

There are various approaches used today to implement FIBs
which trade-off between memory and processing speed. Hashing-
based solutions like Ludo hashing [10] are fast as they allow for𝑂 (1)
accesses to make the forwarding decision, however they require
large memory to over-provision for collisions. On the other hand,
tree-like data structures are useful to do longest prefix matching
(LPM) and are much more space-efficient since they do not need
to overprovision memory like hashing based solutions. However,
the lookups require tree-traversal, i.e., multiple memory accesses
which make such solutions slow. Neither of these designs scale well
with the rapidly growing number of hosts on the Internet and the
increasing link capacities. The growing number of hosts require
larger hash tables, whereas the increasing link speeds mean that the
switches run the risk of becoming a bottleneck if their processing
speed cannot scale because of slow lookups. Finally, upgrading
switches with larger and faster memory is cost-prohibitive, so there
still remains a constant struggle to find FIB designswhich can satisfy
both the memory as well as the processing speed requirements.

As a response to this struggle, probabilistic data structures (e.g.,
Bloom filters, cuckoo filters) have been proposed in the past which
achieve both speed as well as memory-efficiency by trading off
accuracy. BUFFALO[15] proposed a forwarding architecture where
a Bloom filter is provisioned for each output port and each indi-
vidual Bloom filter is responsible for answering whether a packet
should be forwarded onto its corresponding output port. Upon re-
ceiving a packet, BUFFALO performs parallel lookup in all of these
Bloom filters for the packet’s destination IP address to find a match.
Subsequently, the packet is forwarded to a port that has a match.
This approach results in false positives, however picking a port
randomly between multiple matched ports each time guarantees
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that packet reaches its destination with constant bounded stretch.
One problem BUFFALO does not address is the feasibility of per-
forming too many parallel Bloom filter lookups. It is very common
for switches to have upto 64 output ports. Therefore, it becomes
difficult to perform so many lookups in parallel for each packet
owing to limited processing capacity of commodity switches. This
makes it difficult to maintain a high processing rate.

To address these concerns about BUFFALO, we take a data-driven
approach to think about FIB design. Initially, we wanted to find
learnable patterns in forwarding decisions so that we could summa-
rize forwarding in the form of compact machine learning models.
Such a FIB design would be space efficient as well as fast, and it
would not have same scalability concerns as Buffalo. We analyzed
real-world FIB data from a large organization’s network. While
we did not find significant enough patterns that could be learned
through machine learning techniques, we still observed some other
patterns that can be leveraged to improve FIB data structure. For
example, we observed that not all the output ports on a switch are
equally popular. In many cases a few ports have a majority of des-
tination IP addresses mapped to them (which we call heavy hitter
ports). Based on this observation, we propose a new FIB mechanism
that tries to achieve a sweet spot between memory consumption
and processing speed. Our design also uses Bloom filters to make
forwarding decisions similar to BUFFALO, but we use them only for
the heavy hitter ports, whereas for all the other ports we maintain
a small hash table thereby limiting the memory usage. To deter-
mine which IP addresses may be mapped to heavy hitter ports,
we explored a variety of different options, e.g., using a simple ma-
chine learning based classifier, Bloom filters, and learned Bloom
filters [12]. Finally, while our current approach chooses to focus
on improving BUFFALO’s design by using data-driven insights, the
general idea to inform the construction of such hybrid FIB designs
via data extends beyond it.

We implemented our FIB design in C++ and evaluated against
simulated workloads based on an enterprise’s FIB data. We compare
it with the available open-source implementation of Ludo 1. We
found it to be 1.6 − 8× more space efficient than a space-optimized
hashing techniques like Ludo with 1.5 − 2× degradation in query
time compared to Ludo.

2 APPROACH
We take a data-driven approach to FIB design. We first summarize
results from our analysis of the FIB data in 2.1 and then present our
data-driven design in 2.2.

2.1 Data Analysis
First, we analyzed network data from an organization network,
which comprises of forwarding information from 10s of core routers
and 100s of edge routers. We focused on the FIBs of the core routers,
since they have much higher number of entries.
Lack of Patterns: Our initial goal was to learn patterns in for-
warding data through machine learning techniques. This is helpful
because an ML based FIB would be space efficient as well as fast.
However, even after using different machine learning techniques,

1We did not find an open source implementation for Buffalo, but in our evaluation we
show our design’s comparison with a proxy design for a Buffalo based solution.

ML Model Average Accuracy
Decision Trees 26.5%
Random Forest 26.47%

Decision Trees + AdaBoost 19.13%
Support Vector Machines 25.13%

Linear Regression 25.19%
Table 1: Accuracy of different machine learning techniques
in modeling FIB’s forwarding decisions.

we could not faithfully model FIB forwarding decisions (see table
1). The best accuracy we could get was 26.5%. Learning forwarding
decisions is difficult because of scarcity of learnable patterns in FIB
data.

Heavy Hitter Ports: Digging deeper into the data, we noticed
a disparity in how IP prefixes are mapped to output ports – not
all output ports are equally popular. In fact, we observed a very
common pattern: a handful of output ports (less than 10) have most
IP prefixes mapped to them, we call such ports heavy hitter ports.
Whereas majority of switches only have handful of IP prefixes
assigned to them. Figure 1 shows such mapping for a representative
switch from our data. This pattern makes sense because the heavy
hitter ports are typically the network’s outfacing ports which take
traffic from the devices in the network to the Internet. This pattern
thus may not just be specific to the network of our dataset, but a
common theme to most enterprise networks. We also noticed that it
is a little easier to model classification of IP prefixes to heavy hitter
or non heavy hitter ports (Table 2). First, it is an easier problem
to solve because we just have binary classification per IP prefix.
Secondly, patterns can emerge from distinction between internal IP
addresses and external IP addresses. We get an accuracy of 93.39%
with decision trees along with AdaBoost. This is the model we reuse
for the rest of the paper unless stated otherwise.

2.2 Design
We want to have a FIB design that is both space efficient and fast.
We take inspiration from Ludo and BUFFALO. Hashing based FIB
used in Ludo is very fast, but takes up a lot of space. On the other
hand, the Bloom filter based design of BUFFALO is quite space
efficient but does not perform well with larger number of output
ports.

2.2.1 A Hybrid Design. Since we know that most of the IP prefixes
map to a small number of heavy hitter ports, we can use one Bloom
filter per heavy hitter port. It is practical to perform parallel lookups
in these many Bloom filters. And since rest of the ports do not have
a lot of IP prefixes mapped to them, and hence, are not the memory
bottleneck - so they can be stored in a small hash table. We can
control the number of Bloom filters in our data structure by varying
a parameter called heavy hitter threshold (𝜃 ), it is a real number
between 0 and 1, that determines when a port is determined to be a
heavy hitter. If the number of entries mapping to a port are greater
than 𝜃 × 𝑆 , where 𝑆 is the total number of entries in the FIB, then
this port is determined to a heavy hitter port.



2.2.2 Heavy Hitter Classifier. At this point, any given destination
IP address could be matched to either heavy hitter ports (Bloom
filters) or non heavy hitter ports (hash table). Looking up in parallel
for all packets in both of themmay not be ideal as it will significantly
slow down the processing capability of the router. So, we need
a light weight classifier at the top that helps decide which data
structure to search in, for each packet. We discuss a few possible
designs for this below:

ML Models: As discussed, there are some patterns in classifying
IP prefixes as mapping to heavy hitter ports. We were able to build
decision tree models which had accuracy of upto 92-93.39%. This
classifier can however result in false positives and false negatives.
In the case of wrong classification, we might have to perform se-
quential lookup in both data structures - i.e. hash table and Bloom
filters. A 92% accuracy means that 8% queries would require such
sequential lookup. The plus point of using ML however is that in
terms of memory it scales well with respect to size of FIB data.

Bloom Filter: Another option is to use a Bloom filter to store the
set of all IP addresses that map to heavy hitter ports. Bloom filters
can also have false positives, but we can increase size to reduce false
positive rate 2. This howevermeans that as size of FIB data increases,
we will need to increase the size of Bloom filter accordingly. The
false positive in classifier bloom filter can be corrected if heavy
hitter bloom filters do not produce a match, in which case we can
just do a sequential lookup in hashtable.

Learned Bloom Filter: Learned Bloom filter[12] gets best of both
worlds. Essentially, it consists of a ML model at top and all the
negative 3 decisions made by ML model are checked by a backup
Bloom filter which only stores the model’s false negatives. The size
of the backup Bloom filter would be really small; if model has a false
negative rate of 5%, the size of the backup Bloom filter would also
be 5% of the overall size. This solution thus has no false negatives,
and in terms of memory, learned Bloom filter scales quite well.
Similar to BF and ML classifiers, we can address false positives in
the classifier by doing a sequential lookup in hashtable.

2.2.3 Optimizing Memory Usage. The classifier for heavy hitters
needs to be accurate enough, since a misclassification can lead
to serial lookups in both the Bloom filters as well as the hash
table. Secondly, the false positive rates of the bloom filters for
the HH ports should also be low, since their errors can lead to
faulty forwarding decisions. Hence, we formulate an optimization
problem to tune the sizes of the HH bloom filters (and the bloom
filter used in HH classification) so as to minimize their false positive
rates given limited switch memory. We solve for the optimal false
positive rates for all the bloom filters using KKT conditions, similar
to BUFFALO’s approach. We refer to N as the number of heavy
hitter ports, then, we have N Bloom filters, with false positive rates
𝑓1, ....𝑓𝑁 and with memory usage 𝑚1, ....𝑚𝑁 . For the case where
the HH classifier uses a bloom filter, we denote its false positive
rate by 𝑓ℎ , and the total memory used by the classifier as𝑚ℎ . Let
𝑀 denote the total memory available in the switch/router, and𝑤ℎ

be the relative weight (or importance) of the accuracy of the HH

2Bloom filters will have false positives but not false negatives.
3By negative we mean, for any input model deciding that input is not a heavy hitter.

Figure 1: A minority of ports have most IP prefixes assigned
to them. This plot shows 10 most popular ports in one of the
switches in our dataset.

ML Model Average Accuracy
Decision Trees 86.98%
Random Forest 87.93%

Decision Trees + AdaBoost 93.39%
Support Vector Machines 89.69%

Linear Regression 83.53%
Table 2: Accuracy of different machine learning techniques
to learn whether a given IP prefixmaps to a heavy hitter port
or not.

classifier as compared to the accuracy of the Bloom filters for all
HH ports. Then, our objective function is given by :

min𝑤ℎ ∗ 𝑓ℎ + (1 −
𝑁∏
𝑖=1

(1 − 𝑓𝑖 )) (1)

Here, the second term represents the overall false positive rate
of all N Bloom filters combined. For small values of 𝑓𝑖 , the above
expression can be approximated as follows:

min𝑤ℎ ∗ 𝑓ℎ +
𝑁∑︁
𝑖=1

𝑓𝑖 (2)

We add a constraint for total memory usage:

𝑁∑︁
𝑖=1

𝑚𝑖 +𝑚ℎ ≤ 𝑀 (3)

We also add the relationship between each bloom filter’s memory
used and false positive rate, as an equals constraint. More details
on our formulation, and how we solve the optimization problem,
are available at [1].

3 EVALUATION
We evaluate our proposed design and compare against alternatives
mentioned previously.
Dataset. Our dataset comprises of FIB snapshots spanning 5 years
of data collected from 10s of core and 100s of exit routers from
an enterprise network. For each router, the FIB consists of 100s of
entries mapping destination IP prefixes to outgoing ports.



Router # Workload Memory (bytes) Accuracy Query time (ns)

Ludo Our design Ludo Our design Ludo Our design

1 Uniform 27500 16750 1 0.995 620 1020
1 Zipfian 27500 16750 1 0.995 625 980
2 Uniform 23200 13800 1 1 620 1060
2 Zipfian 23200 13800 1 1 610 950
3 Uniform 15800 2200 1 1 610 1210
3 Zipfian 15800 2200 1 1 610 1210

Table 3: Results for our FIB design compared against Ludo Hash across several representative core routers and workload types.

Look up N bloom filters in parallel Hash table for the rest

Heavy Hitter Classifier

Figure 2: Our FIB design which uses a heavy-hitter classifier
to direct next hop lookups towards either the bloom filter
or the hash table component at which stage the lookup is
performed in-parallel.

Implementation.We implemented our design in C++, wherein we
use different types of HH classifiers, and re-use Ludo’s Hash tables
and Bloom filters implementation to store non-HH and HH entries
respectively. We take as input the memory available on the router,
and tune the false positive rates of all the bloom filters accordingly,
using the solution to our optimization problem. We use𝑤ℎ = 1/𝑁 ,
and 𝜃 = 0.01 (i.e. a port is a HH if more than 0.01 ∗ 𝑆 IP addresses
map to it). We ran all our experiments on a t2.micro EC2 VM on
AWS.
Methodology. For performance testing, we query each FIB design
with keys (i.e., with IPs). To enable the testing, we first create and
populate the FIB data structures for our design and baselines with
a specific router’s FIB entries.
The query workloads are of two types:

(1) Uniform: All keys are requested with equal probability.
(2) Zipfian: Keys are requested with biased probabilities.

Finally, we analyse performance in terms of the memory usage,
accuracy of the lookup, and the query time.

For our design, we analyze performance of machine learning
(ML), Bloom filter (BF) and learned Bloom filter (ML + BF) as HH
classifiers respectively.
Results. Figure 3 highlights the performance of several designs
populated with core router #1’s FIB data. We evaluate our design
with different classifiers for heavy hitters. For each classifier, we
also vary the value of memory available. As the amount of available
memory increases, we can use bigger Bloom filters for all HH ports

as well as for HH classifier (i.e. larger memory footprint) which
give us lower false positive rates and hence improves our accuracy.
Also, with less errors, there are fewer IP addresses for which we
need to do serial lookup in both data structures, hence improving
performance as well. Our results confirm these trends.

Comparison to LudoHashing. LudoHashing naturally achieves
the lowest query time due to its 𝑂 (1) accesses to its hash table and
its accuracy is 1 since it does not use probabilistic data structures.
However, as mentioned previously, Ludo Hashing requires con-
siderable over-provisioning and hence is undesirable when router
memory is at a premium. Considering the points at 18000 bytes, Our
design (with BF or ML+BF classifier) achieves the same accuracy as
Ludo (i.e. 1) in 1.5x less memory, with 1.6-2x degradation in mean
query time.

Comparing different HH Classifiers. For our design, using
Bloom filter as the HH classifier performs the best in terms of accu-
racy, memory and query time. However, on a different dataset the
ML+BF classifier may outperform it especially since it theoretically
scales better than simple Bloom filters. Table 3 summarizes results
across a few different core routers and we see similar trends.

4 DISCUSSION
Consequence of inaccuracy. In our ensemble FIB design, inac-
curacy in the form of a false positive can arise from any Bloom
filter component. For the Bloom filters used for HH classification,
an error could lead to serial lookup in both data structures, which
we saw in the results. But, the consequence of a false positive in
the Bloom filters for HH ports (i.e., incorrectly selecting a next hop
among multiple next hops) can lead the packet astray. However
as per BUFFALO [15], by randomly selecting the next hop from
all the matching next hops, excluding the interface on which the
packet arrived, guarantees that packet reaches its destination with
constant bounded stretch.
Key addition. The bloom filters for HH ports support updates by
design - a new key can be added in constant time. For the Ludo
Hash component of our ensemble FIB design, we can leverage its
capability to dynamically add keys during run-time. When a new
key needs to be added, we can simply add it to the Ludo Hash or to
the Bloom Filter of the corresponding port.
FIB design updation. The FIB data can be periodically analyzed to
re-classify whether each output port is a heavy-hitter or not. Also,
both the bloom filters and Ludo hash might need to be re-sized if
the number of keys increases. Subsequently, a possibly different
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Figure 3: Evaluation on a representative core router. The left plot shows memory-accuracy tradeoff of our design against Ludo.
The right plot compares query time. Our design has one curve for each classifier (ML for Machine Learning, BF for Bloom
Filter and ML+BF for Learned Bloom Filter classifier) with 5 data points each for different values of Bloom filter sizes (and
therefore assumed available memory).

number of Bloom filters (with different sizes) and a differently
sized hash table can be initialized and populated with the new and
updated FIB data. We assume capabilities of a programmable switch
(e.g., Barefoot Tofino) to achieve this. If we use an ML model for
HH classification, we might also need to re-train it - this could
potentially be done at the edge and the models could be pushed to
the switches. We leave this to future work.

Resource driven optimization When deciding on number of
Bloom filters (𝑁 ), we can also take into account available resources.
If the switch has ability to run only𝑚 number of parallel threads
then 𝑁 should not be greater than𝑚 to ensure line rate. Similarly,
if the switch is memory bound, we can push more load towards
Bloom filter at cost of higher query time and drop in accuracy.

5 RELATEDWORK
Traditionally forwarding information base has been designed using
tries or trees [4, 6, 11, 14]. Tries allow longest prefix matching
by traversing the tree. However, tree traversal can be slow and
therefore such solutions suffer with processing rates.

To improve the lookup time, many solutions rely on hashtables
and key-value stores. Hashing schemes like Cuckoo hashing [8, 16]
can allow𝑂 (1) lookups. However, hashtables require memory over-
provisioning to avoid or resolve hashing conflicts. Most hashing
based solutions thus require storing keys along with the values
in the table to resolve conflicts. This further adds to memory re-
quirements of such solutions. There are solutions to address this
problem in form of Ludo Hashing [10] and other similar solutions
[3, 13]. Such solutions perform different compression techniques on
keys to reduce overhead of storing them. Despite of this, hashing
based solutions still require memory overprovisioning to reduce
collisions to ensure 𝑂 (1) lookups.

Bloom filters have also been used to make space efficient yet
fast FIBs [2, 7, 15]. Buffalo e.g. maintains a Bloom filter for each
outgoing port and stores in it the IP addresses mapped to that port.
Lookups for IP addresses then require parallel lookups in all these
Bloom filters. Bloom filter based solutions have also been extended
to provide ability to do longest prefix matching [2, 5, 7].

Hardware based solutions like TCAM give the ability to do
longest prefix matching in𝑂 (1) through specialized hardware with-
out overprovisioning like hashtables[9]. However, such hardware
is expensive and difficult to program.

6 CONCLUSION
This paper presents a case for using data-driven approaches to better
inform the design of a router’s forwarding information base. We
present our design and evaluate our prototype using network data
from an enterprise network comprising of FIB data from a collection
of core and exit routers. We also discuss a few challenges that
arise with our approach and potential solutions for them. Finally,
in closing, we argue that using data to inform FIB design is an
interesting direction which can help in scaling with the growing
demand for fast and in-expensive lookups, and is complimentary
to existing approaches.
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